fix:修改UDP通讯中,取电变化上报机制

1、问题点:当RCU网络状态异常的情况下,网络还处于协商状态下,还未进入正常通讯环节时,取电变化不会进行判断。这会导致取电变化上报与实际产生取电状态时间点对不上。
2、将BLV_C1F_Module代码上传至Gitea,之前代码修改记录请查看 .\BasicCode\Readme.txt
This commit is contained in:
caocong
2026-01-23 09:23:12 +08:00
commit 95916b9995
622 changed files with 1336094 additions and 0 deletions

View File

@@ -0,0 +1,119 @@
#ifndef MQTTCONNECT_H_
#define MQTTCONNECT_H_
#if !defined(DLLImport)
#define DLLImport
#endif
#if !defined(DLLExport)
#define DLLExport
#endif
typedef union
{
unsigned char all; /**< all connect flags */
#if defined(REVERSED)
struct
{
unsigned int username : 1; /**< 3.1 user name */
unsigned int password : 1; /**< 3.1 password */
unsigned int willRetain : 1; /**< will retain setting */
unsigned int willQoS : 2; /**< will QoS value */
unsigned int will : 1; /**< will flag */
unsigned int cleansession : 1; /**< clean session flag */
unsigned int : 1; /**< unused */
} bits;
#else
struct
{
unsigned int : 1; /**< unused */
unsigned int cleansession : 1; /**< cleansession flag */
unsigned int will : 1; /**< will flag */
unsigned int willQoS : 2; /**< will QoS value */
unsigned int willRetain : 1; /**< will retain setting */
unsigned int password : 1; /**< 3.1 password */
unsigned int username : 1; /**< 3.1 user name */
} bits;
#endif
} MQTTConnectFlags; /**< connect flags byte */
/**
* Defines the MQTT "Last Will and Testament" (LWT) settings for
* the connect packet.
*/
typedef struct
{
/** The eyecatcher for this structure. must be MQTW. */
char struct_id[4];
/** The version number of this structure. Must be 0 */
int struct_version;
/** The LWT topic to which the LWT message will be published. */
MQTTString topicName;
/** The LWT payload. */
MQTTString message;
/**
* The retained flag for the LWT message (see MQTTAsync_message.retained).
*/
unsigned char retained;
/**
* The quality of service setting for the LWT message (see
* MQTTAsync_message.qos and @ref qos).
*/
char qos;
} MQTTPacket_willOptions;
#define MQTTPacket_willOptions_initializer { {'M', 'Q', 'T', 'W'}, 0, {NULL, {0, NULL}}, {NULL, {0, NULL}}, 0, 0 }
typedef struct
{
/** The eyecatcher for this structure. must be MQTC. */
char struct_id[4];
/** The version number of this structure. Must be 0 */
int struct_version;
/** Version of MQTT to be used. 3 = 3.1 4 = 3.1.1
*/
unsigned char MQTTVersion;
MQTTString clientID;
unsigned short keepAliveInterval;
unsigned char cleansession;
unsigned char willFlag;
MQTTPacket_willOptions will;
MQTTString username;
MQTTString password;
} MQTTPacket_connectData;
typedef union
{
unsigned char all; /**< all connack flags */
#if defined(REVERSED)
struct
{
unsigned int reserved : 7; /**< unused */
unsigned int sessionpresent : 1; /**< session present flag */
} bits;
#else
struct
{
unsigned int sessionpresent : 1; /**< session present flag */
unsigned int reserved: 7; /**< unused */
} bits;
#endif
} MQTTConnackFlags; /**< connack flags byte */
#define MQTTPacket_connectData_initializer { {'M', 'Q', 'T', 'C'}, 0, 4, {NULL, {0, NULL}}, 60, 1, 0, \
MQTTPacket_willOptions_initializer, {NULL, {0, NULL}}, {NULL, {0, NULL}} }
DLLExport int MQTTSerialize_connect(unsigned char* buf , int buflen, MQTTPacket_connectData* options);
DLLExport int MQTTDeserialize_connect(MQTTPacket_connectData* data, unsigned char* buf, int len);
DLLExport int MQTTSerialize_connack(unsigned char* buf, int buflen, unsigned char connack_rc, unsigned char sessionPresent);
DLLExport int MQTTDeserialize_connack(unsigned char* sessionPresent, unsigned char* connack_rc, unsigned char* buf, int buflen);
DLLExport int MQTTSerialize_disconnect(unsigned char* buf, int buflen);
DLLExport int MQTTSerialize_pingreq(unsigned char* buf, int buflen);
#endif /* MQTTCONNECT_H_ */

View File

@@ -0,0 +1,200 @@
#include "MQTTPacket.h"
#include "StackTrace.h"
#include <string.h>
/**
* Determines the length of the MQTT connect packet that would be produced using the supplied connect options.
* @param options the options to be used to build the connect packet
* @return the length of buffer needed to contain the serialized version of the packet
*/
int MQTTSerialize_connectLength(MQTTPacket_connectData* options)
{
int len = 0;
FUNC_ENTRY;
if (options->MQTTVersion == 3)
len = 12; /* variable depending on MQTT or MQIsdp */
else if (options->MQTTVersion == 4)
len = 10;
len += MQTTstrlen(options->clientID)+2;
if (options->willFlag)
len += MQTTstrlen(options->will.topicName)+2 + MQTTstrlen(options->will.message)+2;
if (options->username.cstring || options->username.lenstring.data)
len += MQTTstrlen(options->username)+2;
if (options->password.cstring || options->password.lenstring.data)
len += MQTTstrlen(options->password)+2;
FUNC_EXIT_RC(len);
return len;
}
/**
* Serializes the connect options into the buffer.
* @param buf the buffer into which the packet will be serialized
* @param len the length in bytes of the supplied buffer
* @param options the options to be used to build the connect packet
* @return serialized length, or error if 0
*/
int MQTTSerialize_connect(unsigned char* buf, int buflen, MQTTPacket_connectData* options)
{
unsigned char *ptr = buf;
MQTTHeader header = {0};
MQTTConnectFlags flags = {0};
int len = 0;
int rc = -1;
FUNC_ENTRY;
if (MQTTPacket_len(len = MQTTSerialize_connectLength(options)) > buflen)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
printf("exit\n");
goto exit;
}
header.byte = 0;
header.bits.type = CONNECT;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, len); /* write remaining length */
if (options->MQTTVersion == 4)
{
writeCString(&ptr, "MQTT");
writeChar(&ptr, (char) 4);
}
else
{
writeCString(&ptr, "MQIsdp");
writeChar(&ptr, (char) 3);
}
flags.all = 0;
flags.bits.cleansession = options->cleansession;
flags.bits.will = (options->willFlag) ? 1 : 0;
if (flags.bits.will)
{
flags.bits.willQoS = options->will.qos;
flags.bits.willRetain = options->will.retained;
}
if (options->username.cstring || options->username.lenstring.data)
flags.bits.username = 1;
if (options->password.cstring || options->password.lenstring.data)
flags.bits.password = 1;
writeChar(&ptr, flags.all);
writeInt(&ptr, options->keepAliveInterval);
writeMQTTString(&ptr, options->clientID);
if (options->willFlag)
{
writeMQTTString(&ptr, options->will.topicName);
writeMQTTString(&ptr, options->will.message);
}
if (flags.bits.username)
writeMQTTString(&ptr, options->username);
if (flags.bits.password)
writeMQTTString(&ptr, options->password);
rc = ptr - buf;
exit: FUNC_EXIT_RC(rc);
printf("rc=%d\n",rc);
return rc;
}
/**
* Deserializes the supplied (wire) buffer into connack data - return code
* @param sessionPresent the session present flag returned (only for MQTT 3.1.1)
* @param connack_rc returned integer value of the connack return code
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param len the length in bytes of the data in the supplied buffer
* @return error code. 1 is success, 0 is failure
*/
int MQTTDeserialize_connack(unsigned char* sessionPresent, unsigned char* connack_rc, unsigned char* buf, int buflen)
{
MQTTHeader header = {0};
unsigned char* curdata = buf;
unsigned char* enddata = NULL;
int rc = 0;
int mylen;
MQTTConnackFlags flags = {0};
FUNC_ENTRY;
header.byte = readChar(&curdata);
if (header.bits.type != CONNACK)
goto exit;
curdata += (rc = MQTTPacket_decodeBuf(curdata, &mylen)); /* read remaining length */
enddata = curdata + mylen;
if (enddata - curdata < 2)
goto exit;
flags.all = readChar(&curdata);
*sessionPresent = flags.bits.sessionpresent;
*connack_rc = readChar(&curdata);
rc = 1;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Serializes a 0-length packet into the supplied buffer, ready for writing to a socket
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer, to avoid overruns
* @param packettype the message type
* @return serialized length, or error if 0
*/
int MQTTSerialize_zero(unsigned char* buf, int buflen, unsigned char packettype)
{
MQTTHeader header = {0};
int rc = -1;
unsigned char *ptr = buf;
FUNC_ENTRY;
if (buflen < 2)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
goto exit;
}
header.byte = 0;
header.bits.type = packettype;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, 0); /* write remaining length */
rc = ptr - buf;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Serializes a disconnect packet into the supplied buffer, ready for writing to a socket
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer, to avoid overruns
* @return serialized length, or error if 0
*/
int MQTTSerialize_disconnect(unsigned char* buf, int buflen)
{
return MQTTSerialize_zero(buf, buflen, DISCONNECT);
}
/**
* Serializes a disconnect packet into the supplied buffer, ready for writing to a socket
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer, to avoid overruns
* @return serialized length, or error if 0
*/
int MQTTSerialize_pingreq(unsigned char* buf, int buflen)
{
return MQTTSerialize_zero(buf, buflen, PINGREQ);
}

View File

@@ -0,0 +1,91 @@
#include "StackTrace.h"
#include "MQTTPacket.h"
#include <string.h>
#define min(a, b) ((a < b) ? 1 : 0)
/**
* Deserializes the supplied (wire) buffer into publish data
* @param dup returned integer - the MQTT dup flag
* @param qos returned integer - the MQTT QoS value
* @param retained returned integer - the MQTT retained flag
* @param packetid returned integer - the MQTT packet identifier
* @param topicName returned MQTTString - the MQTT topic in the publish
* @param payload returned byte buffer - the MQTT publish payload
* @param payloadlen returned integer - the length of the MQTT payload
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param buflen the length in bytes of the data in the supplied buffer
* @return error code. 1 is success
*/
int MQTTDeserialize_publish(unsigned char* dup, int* qos, unsigned char* retained, unsigned short* packetid, MQTTString* topicName,
unsigned char** payload, int* payloadlen, unsigned char* buf, int buflen)
{
MQTTHeader header = {0};
unsigned char* curdata = buf;
unsigned char* enddata = NULL;
int rc = 0;
int mylen = 0;
FUNC_ENTRY;
header.byte = readChar(&curdata);
if (header.bits.type != PUBLISH)
goto exit;
*dup = header.bits.dup;
*qos = header.bits.qos;
*retained = header.bits.retain;
curdata += (rc = MQTTPacket_decodeBuf(curdata, &mylen)); /* read remaining length */
enddata = curdata + mylen;
if (!readMQTTLenString(topicName, &curdata, enddata) ||
enddata - curdata < 0) /* do we have enough data to read the protocol version byte? */
goto exit;
if (*qos > 0)
*packetid = readInt(&curdata);
*payloadlen = enddata - curdata;
*payload = curdata;
rc = 1;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Deserializes the supplied (wire) buffer into an ack
* @param packettype returned integer - the MQTT packet type
* @param dup returned integer - the MQTT dup flag
* @param packetid returned integer - the MQTT packet identifier
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param buflen the length in bytes of the data in the supplied buffer
* @return error code. 1 is success, 0 is failure
*/
int MQTTDeserialize_ack(unsigned char* packettype, unsigned char* dup, unsigned short* packetid, unsigned char* buf, int buflen)
{
MQTTHeader header = {0};
unsigned char* curdata = buf;
unsigned char* enddata = NULL;
int rc = 0;
int mylen;
FUNC_ENTRY;
header.byte = readChar(&curdata);
*dup = header.bits.dup;
*packettype = header.bits.type;
curdata += (rc = MQTTPacket_decodeBuf(curdata, &mylen)); /* read remaining length */
enddata = curdata + mylen;
if (enddata - curdata < 2)
goto exit;
*packetid = readInt(&curdata);
rc = 1;
exit:
FUNC_EXIT_RC(rc);
return rc;
}

View File

@@ -0,0 +1,246 @@
#include "StackTrace.h"
#include "MQTTPacket.h"
#include <string.h>
const char* MQTTPacket_names[] =
{
"RESERVED", "CONNECT", "CONNACK", "PUBLISH", "PUBACK", "PUBREC", "PUBREL",
"PUBCOMP", "SUBSCRIBE", "SUBACK", "UNSUBSCRIBE", "UNSUBACK",
"PINGREQ", "PINGRESP", "DISCONNECT"
};
const char* MQTTPacket_getName(unsigned short packetid)
{
return MQTTPacket_names[packetid];
}
int MQTTStringFormat_connect(char* strbuf, int strbuflen, MQTTPacket_connectData* data)
{
int strindex = 0;
strindex = snprintf(strbuf, strbuflen,
"CONNECT MQTT version %d, client id %.*s, clean session %d, keep alive %d",
(int)data->MQTTVersion, data->clientID.lenstring.len, data->clientID.lenstring.data,
(int)data->cleansession, data->keepAliveInterval);
if (data->willFlag)
strindex += snprintf(&strbuf[strindex], strbuflen - strindex,
", will QoS %d, will retain %d, will topic %.*s, will message %.*s",
data->will.qos, data->will.retained,
data->will.topicName.lenstring.len, data->will.topicName.lenstring.data,
data->will.message.lenstring.len, data->will.message.lenstring.data);
if (data->username.lenstring.data && data->username.lenstring.len > 0)
strindex += snprintf(&strbuf[strindex], strbuflen - strindex,
", user name %.*s", data->username.lenstring.len, data->username.lenstring.data);
if (data->password.lenstring.data && data->password.lenstring.len > 0)
strindex += snprintf(&strbuf[strindex], strbuflen - strindex,
", password %.*s", data->password.lenstring.len, data->password.lenstring.data);
return strindex;
}
int MQTTStringFormat_connack(char* strbuf, int strbuflen, unsigned char connack_rc, unsigned char sessionPresent)
{
int strindex = snprintf(strbuf, strbuflen, "CONNACK session present %d, rc %d", sessionPresent, connack_rc);
return strindex;
}
int MQTTStringFormat_publish(char* strbuf, int strbuflen, unsigned char dup, int qos, unsigned char retained,
unsigned short packetid, MQTTString topicName, unsigned char* payload, int payloadlen)
{
int strindex = snprintf(strbuf, strbuflen,
"PUBLISH dup %d, QoS %d, retained %d, packet id %d, topic %.*s, payload length %d, payload %.*s",
dup, qos, retained, packetid,
(topicName.lenstring.len < 20) ? topicName.lenstring.len : 20, topicName.lenstring.data,
payloadlen, (payloadlen < 20) ? payloadlen : 20, payload);
return strindex;
}
int MQTTStringFormat_ack(char* strbuf, int strbuflen, unsigned char packettype, unsigned char dup, unsigned short packetid)
{
int strindex = snprintf(strbuf, strbuflen, "%s, packet id %d", MQTTPacket_names[packettype], packetid);
if (dup)
strindex += snprintf(strbuf + strindex, strbuflen - strindex, ", dup %d", dup);
return strindex;
}
int MQTTStringFormat_subscribe(char* strbuf, int strbuflen, unsigned char dup, unsigned short packetid, int count,
MQTTString topicFilters[], int requestedQoSs[])
{
return snprintf(strbuf, strbuflen,
"SUBSCRIBE dup %d, packet id %d count %d topic %.*s qos %d",
dup, packetid, count,
topicFilters[0].lenstring.len, topicFilters[0].lenstring.data,
requestedQoSs[0]);
}
int MQTTStringFormat_suback(char* strbuf, int strbuflen, unsigned short packetid, int count, int* grantedQoSs)
{
return snprintf(strbuf, strbuflen,
"SUBACK packet id %d count %d granted qos %d", packetid, count, grantedQoSs[0]);
}
int MQTTStringFormat_unsubscribe(char* strbuf, int strbuflen, unsigned char dup, unsigned short packetid,
int count, MQTTString topicFilters[])
{
return snprintf(strbuf, strbuflen,
"UNSUBSCRIBE dup %d, packet id %d count %d topic %.*s",
dup, packetid, count,
topicFilters[0].lenstring.len, topicFilters[0].lenstring.data);
}
#if defined(MQTT_CLIENT)
char* MQTTFormat_toClientString(char* strbuf, int strbuflen, unsigned char* buf, int buflen)
{
int index = 0;
int rem_length = 0;
MQTTHeader header = {0};
int strindex = 0;
header.byte = buf[index++];
index += MQTTPacket_decodeBuf(&buf[index], &rem_length);
switch (header.bits.type)
{
case CONNACK:
{
unsigned char sessionPresent, connack_rc;
if (MQTTDeserialize_connack(&sessionPresent, &connack_rc, buf, buflen) == 1)
strindex = MQTTStringFormat_connack(strbuf, strbuflen, connack_rc, sessionPresent);
}
break;
case PUBLISH:
{
unsigned char dup, retained, *payload;
unsigned short packetid;
int qos, payloadlen;
MQTTString topicName = MQTTString_initializer;
if (MQTTDeserialize_publish(&dup, &qos, &retained, &packetid, &topicName,
&payload, &payloadlen, buf, buflen) == 1)
strindex = MQTTStringFormat_publish(strbuf, strbuflen, dup, qos, retained, packetid,
topicName, payload, payloadlen);
}
break;
case PUBACK:
case PUBREC:
case PUBREL:
case PUBCOMP:
{
unsigned char packettype, dup;
unsigned short packetid;
if (MQTTDeserialize_ack(&packettype, &dup, &packetid, buf, buflen) == 1)
strindex = MQTTStringFormat_ack(strbuf, strbuflen, packettype, dup, packetid);
}
break;
case SUBACK:
{
unsigned short packetid;
int maxcount = 1, count = 0;
int grantedQoSs[1];
if (MQTTDeserialize_suback(&packetid, maxcount, &count, grantedQoSs, buf, buflen) == 1)
strindex = MQTTStringFormat_suback(strbuf, strbuflen, packetid, count, grantedQoSs);
}
break;
case UNSUBACK:
{
unsigned short packetid;
if (MQTTDeserialize_unsuback(&packetid, buf, buflen) == 1)
strindex = MQTTStringFormat_ack(strbuf, strbuflen, UNSUBACK, 0, packetid);
}
break;
case PINGREQ:
case PINGRESP:
case DISCONNECT:
strindex = snprintf(strbuf, strbuflen, "%s", MQTTPacket_names[header.bits.type]);
break;
}
return strbuf;
}
#endif
#if defined(MQTT_SERVER)
char* MQTTFormat_toServerString(char* strbuf, int strbuflen, unsigned char* buf, int buflen)
{
int index = 0;
int rem_length = 0;
MQTTHeader header = {0};
int strindex = 0;
header.byte = buf[index++];
index += MQTTPacket_decodeBuf(&buf[index], &rem_length);
switch (header.bits.type)
{
case CONNECT:
{
MQTTPacket_connectData data;
int rc;
if ((rc = MQTTDeserialize_connect(&data, buf, buflen)) == 1)
strindex = MQTTStringFormat_connect(strbuf, strbuflen, &data);
}
break;
case PUBLISH:
{
unsigned char dup, retained, *payload;
unsigned short packetid;
int qos, payloadlen;
MQTTString topicName = MQTTString_initializer;
if (MQTTDeserialize_publish(&dup, &qos, &retained, &packetid, &topicName,
&payload, &payloadlen, buf, buflen) == 1)
strindex = MQTTStringFormat_publish(strbuf, strbuflen, dup, qos, retained, packetid,
topicName, payload, payloadlen);
}
break;
case PUBACK:
case PUBREC:
case PUBREL:
case PUBCOMP:
{
unsigned char packettype, dup;
unsigned short packetid;
if (MQTTDeserialize_ack(&packettype, &dup, &packetid, buf, buflen) == 1)
strindex = MQTTStringFormat_ack(strbuf, strbuflen, packettype, dup, packetid);
}
break;
case SUBSCRIBE:
{
unsigned char dup;
unsigned short packetid;
int maxcount = 1, count = 0;
MQTTString topicFilters[1];
int requestedQoSs[1];
if (MQTTDeserialize_subscribe(&dup, &packetid, maxcount, &count,
topicFilters, requestedQoSs, buf, buflen) == 1)
strindex = MQTTStringFormat_subscribe(strbuf, strbuflen, dup, packetid, count, topicFilters, requestedQoSs);;
}
break;
case UNSUBSCRIBE:
{
unsigned char dup;
unsigned short packetid;
int maxcount = 1, count = 0;
MQTTString topicFilters[1];
if (MQTTDeserialize_unsubscribe(&dup, &packetid, maxcount, &count, topicFilters, buf, buflen) == 1)
strindex = MQTTStringFormat_unsubscribe(strbuf, strbuflen, dup, packetid, count, topicFilters);
}
break;
case PINGREQ:
case PINGRESP:
case DISCONNECT:
strindex = snprintf(strbuf, strbuflen, "%s", MQTTPacket_names[header.bits.type]);
break;
}
strbuf[strbuflen] = '\0';
return strbuf;
}
#endif

View File

@@ -0,0 +1,21 @@
#if !defined(MQTTFORMAT_H)
#define MQTTFORMAT_H
#include "StackTrace.h"
#include "MQTTPacket.h"
const char* MQTTPacket_getName(unsigned short packetid);
int MQTTStringFormat_connect(char* strbuf, int strbuflen, MQTTPacket_connectData* data);
int MQTTStringFormat_connack(char* strbuf, int strbuflen, unsigned char connack_rc, unsigned char sessionPresent);
int MQTTStringFormat_publish(char* strbuf, int strbuflen, unsigned char dup, int qos, unsigned char retained,
unsigned short packetid, MQTTString topicName, unsigned char* payload, int payloadlen);
int MQTTStringFormat_ack(char* strbuf, int strbuflen, unsigned char packettype, unsigned char dup, unsigned short packetid);
int MQTTStringFormat_subscribe(char* strbuf, int strbuflen, unsigned char dup, unsigned short packetid, int count,
MQTTString topicFilters[], int requestedQoSs[]);
int MQTTStringFormat_suback(char* strbuf, int strbuflen, unsigned short packetid, int count, int* grantedQoSs);
int MQTTStringFormat_unsubscribe(char* strbuf, int strbuflen, unsigned char dup, unsigned short packetid,
int count, MQTTString topicFilters[]);
char* MQTTFormat_toClientString(char* strbuf, int strbuflen, unsigned char* buf, int buflen);
char* MQTTFormat_toServerString(char* strbuf, int strbuflen, unsigned char* buf, int buflen);
#endif

View File

@@ -0,0 +1,396 @@
#include "StackTrace.h"
#include "MQTTPacket.h"
#include <string.h>
/**
* Encodes the message length according to the MQTT algorithm
* @param buf the buffer into which the encoded data is written
* @param length the length to be encoded
* @return the number of bytes written to buffer
*/
int MQTTPacket_encode(unsigned char* buf, int length)
{
int rc = 0;
FUNC_ENTRY;
do
{
char d = length % 128;
length /= 128;
/* if there are more digits to encode, set the top bit of this digit */
if (length > 0)
d |= 0x80;
buf[rc++] = d;
} while (length > 0);
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Decodes the message length according to the MQTT algorithm
* @param getcharfn pointer to function to read the next character from the data source
* @param value the decoded length returned
* @return the number of bytes read from the socket
*/
int MQTTPacket_decode(int (*getcharfn)(unsigned char*, int), int* value)
{
unsigned char c;
int multiplier = 1;
int len = 0;
#define MAX_NO_OF_REMAINING_LENGTH_BYTES 4
FUNC_ENTRY;
*value = 0;
do
{
int rc = MQTTPACKET_READ_ERROR;
if (++len > MAX_NO_OF_REMAINING_LENGTH_BYTES)
{
rc = MQTTPACKET_READ_ERROR; /* bad data */
goto exit;
}
rc = (*getcharfn)(&c, 1);
if (rc != 1)
goto exit;
*value += (c & 127) * multiplier;
multiplier *= 128;
} while ((c & 128) != 0);
exit:
FUNC_EXIT_RC(len);
return len;
}
int MQTTPacket_len(int rem_len)
{
rem_len += 1; /* header byte */
/* now remaining_length field */
if (rem_len < 128)
rem_len += 1;
else if (rem_len < 16384)
rem_len += 2;
else if (rem_len < 2097151)
rem_len += 3;
else
rem_len += 4;
return rem_len;
}
static unsigned char* bufptr;
int bufchar(unsigned char* c, int count)
{
int i;
for (i = 0; i < count; ++i)
*c = *bufptr++;
return count;
}
int MQTTPacket_decodeBuf(unsigned char* buf, int* value)
{
bufptr = buf;
return MQTTPacket_decode(bufchar, value);
}
/**
* Calculates an integer from two bytes read from the input buffer
* @param pptr pointer to the input buffer - incremented by the number of bytes used & returned
* @return the integer value calculated
*/
int readInt(unsigned char** pptr)
{
unsigned char* ptr = *pptr;
int len = 256*(*ptr) + (*(ptr+1));
*pptr += 2;
return len;
}
/**
* Reads one character from the input buffer.
* @param pptr pointer to the input buffer - incremented by the number of bytes used & returned
* @return the character read
*/
char readChar(unsigned char** pptr)
{
char c = **pptr;
(*pptr)++;
return c;
}
/**
* Writes one character to an output buffer.
* @param pptr pointer to the output buffer - incremented by the number of bytes used & returned
* @param c the character to write
*/
void writeChar(unsigned char** pptr, char c)
{
**pptr = c;
(*pptr)++;
}
/**
* Writes an integer as 2 bytes to an output buffer.
* @param pptr pointer to the output buffer - incremented by the number of bytes used & returned
* @param anInt the integer to write
*/
void writeInt(unsigned char** pptr, int anInt)
{
**pptr = (unsigned char)(anInt / 256);
(*pptr)++;
**pptr = (unsigned char)(anInt % 256);
(*pptr)++;
}
/**
* Writes a "UTF" string to an output buffer. Converts C string to length-delimited.
* @param pptr pointer to the output buffer - incremented by the number of bytes used & returned
* @param string the C string to write
*/
void writeCString(unsigned char** pptr, const char* string)
{
int len = strlen(string);
writeInt(pptr, len);
memcpy(*pptr, string, len);
*pptr += len;
}
int getLenStringLen(char* ptr)
{
int len = 256*((unsigned char)(*ptr)) + (unsigned char)(*(ptr+1));
return len;
}
void writeMQTTString(unsigned char** pptr, MQTTString mqttstring)
{
if (mqttstring.lenstring.len > 0)
{
writeInt(pptr, mqttstring.lenstring.len);
memcpy(*pptr, mqttstring.lenstring.data, mqttstring.lenstring.len);
*pptr += mqttstring.lenstring.len;
}
else if (mqttstring.cstring)
writeCString(pptr, mqttstring.cstring);
else
writeInt(pptr, 0);
}
/**
* @param mqttstring the MQTTString structure into which the data is to be read
* @param pptr pointer to the output buffer - incremented by the number of bytes used & returned
* @param enddata pointer to the end of the data: do not read beyond
* @return 1 if successful, 0 if not
*/
int readMQTTLenString(MQTTString* mqttstring, unsigned char** pptr, unsigned char* enddata)
{
int rc = 0;
FUNC_ENTRY;
/* the first two bytes are the length of the string */
if (enddata - (*pptr) > 1) /* enough length to read the integer? */
{
//printf("pptr:%p, *pptr:%p", pptr, *pptr);
mqttstring->lenstring.len = readInt(pptr); /* increments pptr to point past length */
if (&(*pptr)[mqttstring->lenstring.len] <= enddata)
{
mqttstring->lenstring.data = (char*)*pptr;
*pptr += mqttstring->lenstring.len;
rc = 1;
}
}
mqttstring->cstring = NULL;
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Return the length of the MQTTstring - C string if there is one, otherwise the length delimited string
* @param mqttstring the string to return the length of
* @return the length of the string
*/
int MQTTstrlen(MQTTString mqttstring)
{
int rc = 0;
if (mqttstring.cstring)
rc = strlen(mqttstring.cstring);
else
rc = mqttstring.lenstring.len;
return rc;
}
/**
* Compares an MQTTString to a C string
* @param a the MQTTString to compare
* @param bptr the C string to compare
* @return boolean - equal or not
*/
int MQTTPacket_equals(MQTTString* a, char* bptr)
{
int alen = 0,
blen = 0;
char *aptr;
if (a->cstring)
{
aptr = a->cstring;
alen = strlen(a->cstring);
}
else
{
aptr = a->lenstring.data;
alen = a->lenstring.len;
}
blen = strlen(bptr);
return (alen == blen) && (strncmp(aptr, bptr, alen) == 0);
}
/**
* Helper function to read packet data from some source into a buffer
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param getfn pointer to a function which will read any number of bytes from the needed source
* @return integer MQTT packet type, or -1 on error
* @note the whole message must fit into the caller's buffer
*/
int MQTTPacket_read(unsigned char* buf, int buflen, int (*getfn)(unsigned char*, int))
{
int rc = -1;
MQTTHeader header = {0};
int len = 0;
int rem_len = 0;
/* 1. read the header byte. This has the packet type in it */
if ((*getfn)(buf, 1) != 1)
goto exit;
len = 1;
/* 2. read the remaining length. This is variable in itself */
MQTTPacket_decode(getfn, &rem_len);
len += MQTTPacket_encode(buf + 1, rem_len); /* put the original remaining length back into the buffer */
/* 3. read the rest of the buffer using a callback to supply the rest of the data */
if((rem_len + len) > buflen)
goto exit;
if (rem_len && ((*getfn)(buf + len, rem_len) != rem_len))
goto exit;
header.byte = buf[0];
rc = header.bits.type;
exit:
return rc;
}
/**
* Decodes the message length according to the MQTT algorithm, non-blocking
* @param trp pointer to a transport structure holding what is needed to solve getting data from it
* @param value the decoded length returned
* @return integer the number of bytes read from the socket, 0 for call again, or -1 on error
*/
static int MQTTPacket_decodenb(MQTTTransport *trp)
{
unsigned char c;
int rc = MQTTPACKET_READ_ERROR;
FUNC_ENTRY;
if(trp->len == 0){ /* initialize on first call */
trp->multiplier = 1;
trp->rem_len = 0;
}
do {
int frc;
if (trp->len >= MAX_NO_OF_REMAINING_LENGTH_BYTES)
goto exit;
if ((frc=(*trp->getfn)(trp->sck, &c, 1)) == -1)
goto exit;
if (frc == 0){
rc = 0;
goto exit;
}
++(trp->len);
trp->rem_len += (c & 127) * trp->multiplier;
trp->multiplier *= 128;
} while ((c & 128) != 0);
rc = trp->len;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Helper function to read packet data from some source into a buffer, non-blocking
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param trp pointer to a transport structure holding what is needed to solve getting data from it
* @return integer MQTT packet type, 0 for call again, or -1 on error
* @note the whole message must fit into the caller's buffer
*/
int MQTTPacket_readnb(unsigned char* buf, int buflen, MQTTTransport *trp)
{
int rc = -1, frc;
MQTTHeader header = {0};
switch(trp->state){
default:
trp->state = 0;
/*FALLTHROUGH*/
case 0:
/* read the header byte. This has the packet type in it */
if ((frc=(*trp->getfn)(trp->sck, buf, 1)) == -1)
goto exit;
if (frc == 0)
return 0;
trp->len = 0;
++trp->state;
/*FALLTHROUGH*/
/* read the remaining length. This is variable in itself */
case 1:
if((frc=MQTTPacket_decodenb(trp)) == MQTTPACKET_READ_ERROR)
goto exit;
if(frc == 0)
return 0;
trp->len = 1 + MQTTPacket_encode(buf + 1, trp->rem_len); /* put the original remaining length back into the buffer */
if((trp->rem_len + trp->len) > buflen)
goto exit;
++trp->state;
/*FALLTHROUGH*/
case 2:
if(trp->rem_len){
/* read the rest of the buffer using a callback to supply the rest of the data */
if ((frc=(*trp->getfn)(trp->sck, buf + trp->len, trp->rem_len)) == -1)
goto exit;
if (frc == 0)
return 0;
trp->rem_len -= frc;
trp->len += frc;
if(trp->rem_len)
return 0;
}
header.byte = buf[0];
rc = header.bits.type;
break;
}
exit:
trp->state = 0;
return rc;
}

View File

@@ -0,0 +1,124 @@
#ifndef MQTTPACKET_H_
#define MQTTPACKET_H_
#if defined(__cplusplus) /* If this is a C++ compiler, use C linkage */
extern "C" {
#endif
#if defined(WIN32_DLL) || defined(WIN64_DLL)
#define DLLImport __declspec(dllimport)
#define DLLExport __declspec(dllexport)
#elif defined(LINUX_SO)
#define DLLImport extern
#define DLLExport __attribute__ ((visibility ("default")))
#else
#define DLLImport
#define DLLExport
#endif
#define FLAG_CONNACK 0X02
#define FLAG_PUBLISH 0X03
#define FLAG_PUBACK 0X04
#define FLAG_SUBACK 0X09
#define FLAG_UNSUBACK 0X0b
#define FLAG_PINGACK 0X0d
enum errors
{
MQTTPACKET_BUFFER_TOO_SHORT = -2,
MQTTPACKET_READ_ERROR = -1,
MQTTPACKET_READ_COMPLETE
};
enum msgTypes
{
CONNECT = 1, CONNACK, PUBLISH, PUBACK, PUBREC, PUBREL,
PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK,
PINGREQ, PINGRESP, DISCONNECT
};
/**
* Bitfields for the MQTT header byte.
*/
typedef union
{
unsigned char byte; /**< the whole byte */
#if defined(REVERSED)
struct
{
unsigned int type : 4; /**< message type nibble */
unsigned int dup : 1; /**< DUP flag bit */
unsigned int qos : 2; /**< QoS value, 0, 1 or 2 */
unsigned int retain : 1; /**< retained flag bit */
} bits;
#else
struct
{
unsigned int retain : 1; /**< retained flag bit */
unsigned int qos : 2; /**< QoS value, 0, 1 or 2 */
unsigned int dup : 1; /**< DUP flag bit */
unsigned int type : 4; /**< message type nibble */
} bits;
#endif
} MQTTHeader;
typedef struct
{
int len;
char* data;
} MQTTLenString;
typedef struct
{
char* cstring;
MQTTLenString lenstring;
} MQTTString;
#define MQTTString_initializer {NULL, {0, NULL}}
int MQTTstrlen(MQTTString mqttstring);
#include "MQTTConnect.h"
#include "MQTTPublish.h"
#include "MQTTSubscribe.h"
#include "MQTTUnsubscribe.h"
#include "MQTTFormat.h"
DLLExport int MQTTSerialize_ack(unsigned char* buf, int buflen, unsigned char type, unsigned char dup, unsigned short packetid);
DLLExport int MQTTDeserialize_ack(unsigned char* packettype, unsigned char* dup, unsigned short* packetid, unsigned char* buf, int buflen);
int MQTTPacket_len(int rem_len);
DLLExport int MQTTPacket_equals(MQTTString* a, char* b);
DLLExport int MQTTPacket_encode(unsigned char* buf, int length);
int MQTTPacket_decode(int (*getcharfn)(unsigned char*, int), int* value);
int MQTTPacket_decodeBuf(unsigned char* buf, int* value);
int readInt(unsigned char** pptr);
char readChar(unsigned char** pptr);
void writeChar(unsigned char** pptr, char c);
void writeInt(unsigned char** pptr, int anInt);
int readMQTTLenString(MQTTString* mqttstring, unsigned char** pptr, unsigned char* enddata);
void writeCString(unsigned char** pptr, const char* string);
void writeMQTTString(unsigned char** pptr, MQTTString mqttstring);
DLLExport int MQTTPacket_read(unsigned char* buf, int buflen, int (*getfn)(unsigned char*, int));
typedef struct {
int (*getfn)(void *, unsigned char*, int); /* must return -1 for error, 0 for call again, or the number of bytes read */
void *sck; /* pointer to whatever the system may use to identify the transport */
int multiplier;
int rem_len;
int len;
char state;
}MQTTTransport;
int MQTTPacket_readnb(unsigned char* buf, int buflen, MQTTTransport *trp);
#ifdef __cplusplus /* If this is a C++ compiler, use C linkage */
}
#endif
#endif /* MQTTPACKET_H_ */

View File

@@ -0,0 +1,21 @@
#ifndef MQTTPUBLISH_H_
#define MQTTPUBLISH_H_
#if !defined(DLLImport)
#define DLLImport
#endif
#if !defined(DLLExport)
#define DLLExport
#endif
DLLExport int MQTTSerialize_publish(unsigned char* buf, int buflen, unsigned char dup, int qos, unsigned char retained, unsigned short packetid,
MQTTString topicName, unsigned char* payload, int payloadlen);
DLLExport int MQTTDeserialize_publish(unsigned char* dup, int* qos, unsigned char* retained, unsigned short* packetid, MQTTString* topicName,
unsigned char** payload, int* payloadlen, unsigned char* buf, int len);
DLLExport int MQTTSerialize_puback(unsigned char* buf, int buflen, unsigned short packetid);
DLLExport int MQTTSerialize_pubrel(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid);
DLLExport int MQTTSerialize_pubcomp(unsigned char* buf, int buflen, unsigned short packetid);
#endif /* MQTTPUBLISH_H_ */

View File

@@ -0,0 +1,152 @@
#include "MQTTPacket.h"
#include "StackTrace.h"
#include <string.h>
/**
* Determines the length of the MQTT publish packet that would be produced using the supplied parameters
* @param qos the MQTT QoS of the publish (packetid is omitted for QoS 0)
* @param topicName the topic name to be used in the publish
* @param payloadlen the length of the payload to be sent
* @return the length of buffer needed to contain the serialized version of the packet
*/
int MQTTSerialize_publishLength(int qos, MQTTString topicName, int payloadlen)
{
int len = 0;
len += 2 + MQTTstrlen(topicName) + payloadlen;
if (qos > 0)
len += 2; /* packetid */
return len;
}
/**
* Serializes the supplied publish data into the supplied buffer, ready for sending
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param dup integer - the MQTT dup flag
* @param qos integer - the MQTT QoS value
* @param retained integer - the MQTT retained flag
* @param packetid integer - the MQTT packet identifier
* @param topicName MQTTString - the MQTT topic in the publish
* @param payload byte buffer - the MQTT publish payload
* @param payloadlen integer - the length of the MQTT payload
* @return the length of the serialized data. <= 0 indicates error
*/
int MQTTSerialize_publish(unsigned char* buf, int buflen, unsigned char dup, int qos, unsigned char retained, unsigned short packetid,
MQTTString topicName, unsigned char* payload, int payloadlen)
{
unsigned char *ptr = buf;
MQTTHeader header = {0};
int rem_len = 0;
int rc = 0;
FUNC_ENTRY;
if (MQTTPacket_len(rem_len = MQTTSerialize_publishLength(qos, topicName, payloadlen)) > buflen)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
goto exit;
}
header.bits.type = PUBLISH;
header.bits.dup = dup;
header.bits.qos = qos;
header.bits.retain = retained;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, rem_len); /* write remaining length */;
writeMQTTString(&ptr, topicName);
if (qos > 0)
writeInt(&ptr, packetid);
memcpy(ptr, payload, payloadlen);
ptr += payloadlen;
rc = ptr - buf;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Serializes the ack packet into the supplied buffer.
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param type the MQTT packet type
* @param dup the MQTT dup flag
* @param packetid the MQTT packet identifier
* @return serialized length, or error if 0
*/
int MQTTSerialize_ack(unsigned char* buf, int buflen, unsigned char packettype, unsigned char dup, unsigned short packetid)
{
MQTTHeader header = {0};
int rc = 0;
unsigned char *ptr = buf;
FUNC_ENTRY;
if (buflen < 4)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
goto exit;
}
header.bits.type = packettype;
header.bits.dup = dup;
header.bits.qos = (packettype == PUBREL) ? 1 : 0;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, 2); /* write remaining length */
writeInt(&ptr, packetid);
rc = ptr - buf;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Serializes a puback packet into the supplied buffer.
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param packetid integer - the MQTT packet identifier
* @return serialized length, or error if 0
*/
int MQTTSerialize_puback(unsigned char* buf, int buflen, unsigned short packetid)
{
return MQTTSerialize_ack(buf, buflen, PUBACK, 0, packetid);
}
/**
* Serializes a pubrel packet into the supplied buffer.
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param dup integer - the MQTT dup flag
* @param packetid integer - the MQTT packet identifier
* @return serialized length, or error if 0
*/
int MQTTSerialize_pubrel(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid)
{
return MQTTSerialize_ack(buf, buflen, PUBREL, dup, packetid);
}
/**
* Serializes a pubrel packet into the supplied buffer.
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied buffer
* @param packetid integer - the MQTT packet identifier
* @return serialized length, or error if 0
*/
int MQTTSerialize_pubcomp(unsigned char* buf, int buflen, unsigned short packetid)
{
return MQTTSerialize_ack(buf, buflen, PUBCOMP, 0, packetid);
}

View File

@@ -0,0 +1,22 @@
#ifndef MQTTSUBSCRIBE_H_
#define MQTTSUBSCRIBE_H_
#if !defined(DLLImport)
#define DLLImport
#endif
#if !defined(DLLExport)
#define DLLExport
#endif
DLLExport int MQTTSerialize_subscribe(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid,
int count, MQTTString topicFilters[], int requestedQoSs[]);
DLLExport int MQTTDeserialize_subscribe(unsigned char* dup, unsigned short* packetid,
int maxcount, int* count, MQTTString topicFilters[], int requestedQoSs[], unsigned char* buf, int len);
DLLExport int MQTTSerialize_suback(unsigned char* buf, int buflen, unsigned short packetid, int count, int* grantedQoSs);
DLLExport int MQTTDeserialize_suback(unsigned short* packetid, int maxcount, int* count, int grantedQoSs[], unsigned char* buf, int len);
#endif /* MQTTSUBSCRIBE_H_ */

View File

@@ -0,0 +1,121 @@
#include "MQTTPacket.h"
#include "StackTrace.h"
#include <string.h>
/**
* Determines the length of the MQTT subscribe packet that would be produced using the supplied parameters
* @param count the number of topic filter strings in topicFilters
* @param topicFilters the array of topic filter strings to be used in the publish
* @return the length of buffer needed to contain the serialized version of the packet
*/
int MQTTSerialize_subscribeLength(int count, MQTTString topicFilters[])
{
int i;
int len = 2; /* packetid */
for (i = 0; i < count; ++i)
len += 2 + MQTTstrlen(topicFilters[i]) + 1; /* length + topic + req_qos */
return len;
}
/**
* Serializes the supplied subscribe data into the supplied buffer, ready for sending
* @param buf the buffer into which the packet will be serialized
* @param buflen the length in bytes of the supplied bufferr
* @param dup integer - the MQTT dup flag
* @param packetid integer - the MQTT packet identifier
* @param count - number of members in the topicFilters and reqQos arrays
* @param topicFilters - array of topic filter names
* @param requestedQoSs - array of requested QoS
* @return the length of the serialized data. <= 0 indicates error
*/
int MQTTSerialize_subscribe(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid, int count,
MQTTString topicFilters[], int requestedQoSs[])
{
unsigned char *ptr = buf;
MQTTHeader header = {0};
int rem_len = 0;
int rc = 0;
int i = 0;
FUNC_ENTRY;
if (MQTTPacket_len(rem_len = MQTTSerialize_subscribeLength(count, topicFilters)) > buflen)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
goto exit;
}
header.byte = 0;
header.bits.type = SUBSCRIBE;
header.bits.dup = dup;
header.bits.qos = 1;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, rem_len); /* write remaining length */;
writeInt(&ptr, packetid);
for (i = 0; i < count; ++i)
{
writeMQTTString(&ptr, topicFilters[i]);
writeChar(&ptr, requestedQoSs[i]);
}
rc = ptr - buf;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Deserializes the supplied (wire) buffer into suback data
* @param packetid returned integer - the MQTT packet identifier
* @param maxcount - the maximum number of members allowed in the grantedQoSs array
* @param count returned integer - number of members in the grantedQoSs array
* @param grantedQoSs returned array of integers - the granted qualities of service
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param buflen the length in bytes of the data in the supplied buffer
* @return error code. 1 is success, 0 is failure
*/
int MQTTDeserialize_suback(unsigned short* packetid, int maxcount, int* count, int grantedQoSs[], unsigned char* buf, int buflen)
{
MQTTHeader header = {0};
unsigned char* curdata = buf;
unsigned char* enddata = NULL;
int rc = 0;
int mylen;
FUNC_ENTRY;
header.byte = readChar(&curdata);
if (header.bits.type != SUBACK)
goto exit;
curdata += (rc = MQTTPacket_decodeBuf(curdata, &mylen)); /* read remaining length */
enddata = curdata + mylen;
if (enddata - curdata < 2)
goto exit;
*packetid = readInt(&curdata);
*count = 0;
while (curdata < enddata)
{
if (*count > maxcount)
{
rc = -1;
goto exit;
}
grantedQoSs[(*count)++] = readChar(&curdata);
}
rc = 1;
exit:
FUNC_EXIT_RC(rc);
return rc;
}

View File

@@ -0,0 +1,21 @@
#ifndef MQTTUNSUBSCRIBE_H_
#define MQTTUNSUBSCRIBE_H_
#if !defined(DLLImport)
#define DLLImport
#endif
#if !defined(DLLExport)
#define DLLExport
#endif
DLLExport int MQTTSerialize_unsubscribe(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid,
int count, MQTTString topicFilters[]);
DLLExport int MQTTDeserialize_unsubscribe(unsigned char* dup, unsigned short* packetid, int max_count, int* count, MQTTString topicFilters[],
unsigned char* buf, int len);
DLLExport int MQTTSerialize_unsuback(unsigned char* buf, int buflen, unsigned short packetid);
DLLExport int MQTTDeserialize_unsuback(unsigned short* packetid, unsigned char* buf, int len);
#endif /* MQTTUNSUBSCRIBE_H_ */

View File

@@ -0,0 +1,90 @@
#include "MQTTPacket.h"
#include "StackTrace.h"
#include <string.h>
/**
* Determines the length of the MQTT unsubscribe packet that would be produced using the supplied parameters
* @param count the number of topic filter strings in topicFilters
* @param topicFilters the array of topic filter strings to be used in the publish
* @return the length of buffer needed to contain the serialized version of the packet
*/
int MQTTSerialize_unsubscribeLength(int count, MQTTString topicFilters[])
{
int i;
int len = 2; /* packetid */
for (i = 0; i < count; ++i)
len += 2 + MQTTstrlen(topicFilters[i]); /* length + topic*/
return len;
}
/**
* Serializes the supplied unsubscribe data into the supplied buffer, ready for sending
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param buflen the length in bytes of the data in the supplied buffer
* @param dup integer - the MQTT dup flag
* @param packetid integer - the MQTT packet identifier
* @param count - number of members in the topicFilters array
* @param topicFilters - array of topic filter names
* @return the length of the serialized data. <= 0 indicates error
*/
int MQTTSerialize_unsubscribe(unsigned char* buf, int buflen, unsigned char dup, unsigned short packetid,
int count, MQTTString topicFilters[])
{
unsigned char *ptr = buf;
MQTTHeader header = {0};
int rem_len = 0;
int rc = -1;
int i = 0;
FUNC_ENTRY;
if (MQTTPacket_len(rem_len = MQTTSerialize_unsubscribeLength(count, topicFilters)) > buflen)
{
rc = MQTTPACKET_BUFFER_TOO_SHORT;
goto exit;
}
header.byte = 0;
header.bits.type = UNSUBSCRIBE;
header.bits.dup = dup;
header.bits.qos = 1;
writeChar(&ptr, header.byte); /* write header */
ptr += MQTTPacket_encode(ptr, rem_len); /* write remaining length */;
writeInt(&ptr, packetid);
for (i = 0; i < count; ++i)
writeMQTTString(&ptr, topicFilters[i]);
rc = ptr - buf;
exit:
FUNC_EXIT_RC(rc);
return rc;
}
/**
* Deserializes the supplied (wire) buffer into unsuback data
* @param packetid returned integer - the MQTT packet identifier
* @param buf the raw buffer data, of the correct length determined by the remaining length field
* @param buflen the length in bytes of the data in the supplied buffer
* @return error code. 1 is success, 0 is failure
*/
int MQTTDeserialize_unsuback(unsigned short* packetid, unsigned char* buf, int buflen)
{
unsigned char type = 0;
unsigned char dup = 0;
int rc = 0;
FUNC_ENTRY;
rc = MQTTDeserialize_ack(&type, &dup, packetid, buf, buflen);
if (type == UNSUBACK)
rc = 1;
FUNC_EXIT_RC(rc);
return rc;
}

View File

@@ -0,0 +1,61 @@
#ifndef STACKTRACE_H_
#define STACKTRACE_H_
#include <stdio.h>
#define NOSTACKTRACE 1
#if defined(NOSTACKTRACE)
#define FUNC_ENTRY
#define FUNC_ENTRY_NOLOG
#define FUNC_ENTRY_MED
#define FUNC_ENTRY_MAX
#define FUNC_EXIT
#define FUNC_EXIT_NOLOG
#define FUNC_EXIT_MED
#define FUNC_EXIT_MAX
#define FUNC_EXIT_RC(x)
#define FUNC_EXIT_MED_RC(x)
#define FUNC_EXIT_MAX_RC(x)
#else
#if defined(WIN32)
#define inline __inline
#define FUNC_ENTRY StackTrace_entry(__FUNCTION__, __LINE__, TRACE_MINIMUM)
#define FUNC_ENTRY_NOLOG StackTrace_entry(__FUNCTION__, __LINE__, -1)
#define FUNC_ENTRY_MED StackTrace_entry(__FUNCTION__, __LINE__, TRACE_MEDIUM)
#define FUNC_ENTRY_MAX StackTrace_entry(__FUNCTION__, __LINE__, TRACE_MAXIMUM)
#define FUNC_EXIT StackTrace_exit(__FUNCTION__, __LINE__, NULL, TRACE_MINIMUM)
#define FUNC_EXIT_NOLOG StackTrace_exit(__FUNCTION__, __LINE__, -1)
#define FUNC_EXIT_MED StackTrace_exit(__FUNCTION__, __LINE__, NULL, TRACE_MEDIUM)
#define FUNC_EXIT_MAX StackTrace_exit(__FUNCTION__, __LINE__, NULL, TRACE_MAXIMUM)
#define FUNC_EXIT_RC(x) StackTrace_exit(__FUNCTION__, __LINE__, &x, TRACE_MINIMUM)
#define FUNC_EXIT_MED_RC(x) StackTrace_exit(__FUNCTION__, __LINE__, &x, TRACE_MEDIUM)
#define FUNC_EXIT_MAX_RC(x) StackTrace_exit(__FUNCTION__, __LINE__, &x, TRACE_MAXIMUM)
#else
#define FUNC_ENTRY StackTrace_entry(__func__, __LINE__, TRACE_MINIMUM)
#define FUNC_ENTRY_NOLOG StackTrace_entry(__func__, __LINE__, -1)
#define FUNC_ENTRY_MED StackTrace_entry(__func__, __LINE__, TRACE_MEDIUM)
#define FUNC_ENTRY_MAX StackTrace_entry(__func__, __LINE__, TRACE_MAXIMUM)
#define FUNC_EXIT StackTrace_exit(__func__, __LINE__, NULL, TRACE_MINIMUM)
#define FUNC_EXIT_NOLOG StackTrace_exit(__func__, __LINE__, NULL, -1)
#define FUNC_EXIT_MED StackTrace_exit(__func__, __LINE__, NULL, TRACE_MEDIUM)
#define FUNC_EXIT_MAX StackTrace_exit(__func__, __LINE__, NULL, TRACE_MAXIMUM)
#define FUNC_EXIT_RC(x) StackTrace_exit(__func__, __LINE__, &x, TRACE_MINIMUM)
#define FUNC_EXIT_MED_RC(x) StackTrace_exit(__func__, __LINE__, &x, TRACE_MEDIUM)
#define FUNC_EXIT_MAX_RC(x) StackTrace_exit(__func__, __LINE__, &x, TRACE_MAXIMUM)
void StackTrace_entry(const char* name, int line, int trace);
void StackTrace_exit(const char* name, int line, void* return_value, int trace);
void StackTrace_printStack(FILE* dest);
char* StackTrace_get(unsigned long);
#endif
#endif
#endif /* STACKTRACE_H_ */

View File

@@ -0,0 +1,292 @@
/***
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
**/
#include "aLiYun.h"
#include "utils_hmac.h"
#include "DBG.h"
#include "PC_DeviceTest_Fun.h"
#include "flash.h"
#if MQTT_EN
/*******************************************************************************
* Function Name : ALiYun_Default_Parameter_Get 2022-09-03
* Description : <20><>ʼ<EFBFBD><CABC>Ĭ<EFBFBD>ϲ<EFBFBD><CFB2><EFBFBD>
* Input : aliyun_info
* Output : None
* Return : None
*******************************************************************************/
void ALiYun_Default_Parameter_Get(ALIYUN_INFO* aliyun_info)
{
UINT8 mactostr[12]; //mac<61><63>ַ<EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD>
uint8_t j=0;
for(uint8_t i=0;i<6;i++)
{
mactostr[j]=(MACAddr[i]>>4)&0x0F;
mactostr[j+1]=MACAddr[i]&0x0F;
if(mactostr[j] <= 9)
{
mactostr[j] += 0x30;
}
else if((mactostr[j] >= 10) && (mactostr[j] <= 15))
{
mactostr[j] += 0x37;
}
if(mactostr[j+1] <= 9)
{
mactostr[j+1] += 0x30;
}
else if((mactostr[j+1] >= 10) && (mactostr[j+1] <= 15))
{
mactostr[j+1] += 0x37;
}
j+=2;
}
memcpy(aliyun_info->productKey,DEF_PRODUCTKEY,12);
memcpy(aliyun_info->publish,DEF_ALIY_PUBLISH,12);
memcpy(aliyun_info->sublish,DEF_ALIY_SUBLISH,9);
aliyun_info->mqtt_data.keepAliveInterval=120;
memcpy(aliyun_info->deviceName,mactostr,12);
Flash_Read((UINT8*)aliyun_info->deviceSecret ,33, FLASH_MCU_MQTT_START_ADDRESS+FLASH_MQTTINFO_DeviceSecret_OFFSET);
}
/*******************************************************************************
* Function Name : ALiYun_Machine_Init
* Description : һ<><D2BB>һ<EFBFBD>ܷ<EFBFBD>ʽ<EFBFBD><CABD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* Input : ProductKey<65><79>ProductKey
* deviceName: <20><EFBFBD><E8B1B8>
* DeviceSecret: <20><EFBFBD><E8B1B8>Կ
sublish: <20><><EFBFBD>ĵ<EFBFBD>ַ
keepAliveInterval<61><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
* Output : None
* Return : <20>ɹ<EFBFBD><C9B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>0<EFBFBD><30><EFBFBD>˴<EFBFBD><CBB4>ɹ<EFBFBD><C9B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƴɹ<C6B3><C9B9><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD>ɹ<EFBFBD>
*******************************************************************************/
UINT8 ALiYun_Machine_Init(MQTT_INFO* Mqtt_info, char* ProductKey, char* deviceName, char* DeviceSecret, char* sublish, int keepAliveInterval)
{
if(Mqtt_info == NULL || ProductKey == NULL || deviceName == NULL || sublish == NULL || DeviceSecret == NULL) return 1; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
UINT8 domain_name_len = strlen(ALIYUN_DOMAIN) + strlen(ProductKey) +1;
UINT8 clientID_len = strlen(ALIYUN_CLIENT_ID) + strlen(deviceName) +1;
UINT8 userName_len = strlen(ProductKey) + strlen(deviceName) + 2;
UINT8 passWord_len = 40+1;
UINT8 sublish_len = strlen(sublish) + strlen(ProductKey) + strlen(deviceName) + 5;
int msg_len = strlen(CLIENT_ID_KEY) + strlen(deviceName) + strlen(DEVICE_NAME_KEY) \
+ strlen(deviceName) + strlen(PRODUCTKEY_KEY) + strlen(ProductKey) + 1;
char* domain_name = malloc(domain_name_len); //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ProductKey + <20>̶<EFBFBD><CCB6><EFBFBD>׺<EFBFBD><D7BA>
if(domain_name == NULL) return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
char* clientID = malloc(clientID_len); //<2F><><EFBFBD><EFBFBD>clientID <20><><EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><E8B1B8> + <20>̶<EFBFBD><CCB6><EFBFBD>׺<EFBFBD><D7BA>
if(clientID == NULL)
{
free(domain_name);
return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
char* userName = malloc(userName_len); //<2F><><EFBFBD><EFBFBD>userName <20><><EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><E8B1B8> + & + ProductKey<65><79>
if(userName == NULL)
{
free(domain_name);
free(clientID);
return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
char* passWord = malloc(passWord_len); //<2F><><EFBFBD><EFBFBD> hmacsha1 password
if(passWord == NULL)
{
free(domain_name);
free(clientID);
free(userName);
return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
char* msg = malloc(msg_len); //<2F><><EFBFBD><EFBFBD> hmacsha1 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD>Ե<EFBFBD>ֵ
if(msg == NULL)
{
free(domain_name);
free(clientID);
free(userName);
free(passWord);
return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
char* sublish_str = malloc(sublish_len); //<2F><><EFBFBD><EFBFBD> <20><><EFBFBD>ĵ<EFBFBD>ַ
if(sublish_str == NULL)
{
free(domain_name);
free(clientID);
free(userName);
free(passWord);
free(msg);
return 4; //<2F>ڴ治<DAB4><E6B2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
memset(domain_name, 0, domain_name_len);
memset(clientID, 0, clientID_len);
memset(userName, 0, userName_len);
memset(passWord, 0, passWord_len);
memset(msg, 0, msg_len);
memset(sublish_str, 0, sublish_len);
sprintf(domain_name, "%s%s", ProductKey, ALIYUN_DOMAIN); //ƴ<><C6B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
sprintf(clientID, "%s%s", deviceName, ALIYUN_CLIENT_ID); //ƴ<><C6B4>clientID
sprintf(userName, "%s&%s", deviceName, ProductKey); //ƴ<><C6B4>userName
sprintf(msg, "%s%s%s%s%s%s", CLIENT_ID_KEY, deviceName, DEVICE_NAME_KEY, deviceName, PRODUCTKEY_KEY, ProductKey); //ƴ<><C6B4>hmacsha1 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD>Ե<EFBFBD>ֵ
sprintf(sublish_str, "/%s/%s/%s", ProductKey, deviceName, sublish); //ƴ<>Ӷ<EFBFBD><D3B6>ĵ<EFBFBD>ַ
PRINT("domain_name:%s\n", domain_name);
PRINT("clientID:%s\n", clientID);
PRINT("userName:%s\n", userName);
PRINT("msg:%s\n", msg);
utils_hmac_sha1(msg, strlen(msg), passWord, DeviceSecret, strlen(DeviceSecret)); //<2F><><EFBFBD><EFBFBD>password
PRINT("passWord:%s\n", passWord);
free(msg);
return MQTT_Init(Mqtt_info, domain_name, NULL, clientID, userName, passWord, sublish_str, keepAliveInterval);
}
/*******************************************************************************
* Function Name : ALIYUN_Flash_Parameter_Init
* Description : <20><>flash<73><68>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* Input : Mqtt_info
* Output : None
* Return : None
*******************************************************************************/
UINT8 ALIYUN_Flash_Parameter_Init(MQTT_INFO* Mqtt_info)
{
if(Mqtt_info == NULL) return 1;
char* publish = NULL;
ALIYUN_INFO aliyun_info;
ALIYUN_INFO aliyun_temp;
UINT8 ret = 0;
UINT16 keepAlive = 0;
memset(&aliyun_info, 0x00, sizeof(ALIYUN_INFO));
Flash_Read((UINT8*)&aliyun_temp ,sizeof(ALIYUN_INFO)-4, FLASH_MCU_MQTT_START_ADDRESS);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_keepAliveInterval:%d", aliyun_temp.mqtt_data.keepAliveInterval);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_sublish:%s", aliyun_temp.sublish);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_temp_temp_temp_publish:%s", aliyun_temp.publish);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_temp_productKey:%s", aliyun_temp.productKey);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_temp_deviceName:%s", aliyun_temp.deviceName);
// Dbg_Println(DBG_BIT_NET_STATUS_bit,"temp_deviceSecret:%s\n", aliyun_temp.deviceSecret);
if(memcmp(aliyun_info.deviceName,aliyun_temp.deviceName,sizeof(aliyun_info.deviceName))!=0
||memcmp(aliyun_info.productKey,aliyun_temp.productKey,sizeof(aliyun_info.productKey))!=0
||memcmp(aliyun_info.publish,aliyun_temp.publish,sizeof(aliyun_info.publish))!=0
||memcmp(aliyun_info.sublish,aliyun_temp.sublish,sizeof(aliyun_info.sublish))!=0
||memcmp(&aliyun_info.mqtt_data.keepAliveInterval,&aliyun_temp.mqtt_data.keepAliveInterval,sizeof(aliyun_info.mqtt_data.keepAliveInterval))!=0
)
{
memcpy(&aliyun_info,&aliyun_temp,sizeof(ALIYUN_INFO)); //flash<73>в<EFBFBD><D0B2><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD><E3A3AC>ʹ<EFBFBD><CAB9>flash<73>еIJ<D0B5><C4B2><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ơ<EFBFBD><C6A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʹ<EFBFBD><CAB9>Ĭ<EFBFBD>ϲ<EFBFBD><CFB2><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
}
else
{
ALiYun_Default_Parameter_Get(&aliyun_info);
}
Dbg_Println(DBG_BIT_NET_STATUS_bit,"keepAliveInterval:%d", aliyun_info.mqtt_data.keepAliveInterval);
Dbg_Println(DBG_BIT_NET_STATUS_bit,"sublish:%s", aliyun_info.sublish);
Dbg_Println(DBG_BIT_NET_STATUS_bit,"publish:%s", aliyun_info.publish);
Dbg_Println(DBG_BIT_NET_STATUS_bit,"productKey:%s", aliyun_info.productKey);
Dbg_Println(DBG_BIT_NET_STATUS_bit,"deviceName:%s", aliyun_info.deviceName);
Dbg_Println(DBG_BIT_NET_STATUS_bit,"deviceSecret:%s", aliyun_info.deviceSecret);
if(aliyun_info.mqtt_data.keepAliveInterval < 0xFFFF)
{
keepAlive = aliyun_info.mqtt_data.keepAliveInterval;
}
else //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD>ʹ<EFBFBD><CAB9>Ĭ<EFBFBD><C4AC>ֵ
{
keepAlive = 120;
}
if(aliyun_info.sublish[0] != 0xFF && aliyun_info.sublish[0] != 0x00)
{
}
else //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
{
ret = 3;
goto reault;
}
if(aliyun_info.productKey[0] != 0xFF && aliyun_info.productKey[0] != 0x00)
{
}
else //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
{
ret = 3;
goto reault;
}
if((aliyun_info.deviceName[0] != 0xFF) && (aliyun_info.deviceName[0] != 0x00) && (0x0C == strlen((char *)aliyun_info.deviceName)))
{
}
else //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
{
ret = 3;
goto reault;
}
if(aliyun_info.deviceSecret[0] != 0xFF && aliyun_info.deviceSecret[0] != 0x00)
{
}
else //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϸ<EFBFBD><CFB7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
{
ret = 3;
goto reault;
}
if(aliyun_info.publish[0] != 0xFF && aliyun_info.publish[0] != 0x00)
{
UINT8 len = strlen((char*)aliyun_info.publish) + strlen((char*)aliyun_info.productKey) + strlen((char*)aliyun_info.deviceName) + 5;
publish = malloc(len);
if(publish == NULL)
{
ret = 4;
goto reault;
}
memset(publish, 0, len);
sprintf(publish, "/%s/%s/%s", (char*)aliyun_info.productKey, (char*)aliyun_info.deviceName, (char*)aliyun_info.publish); //ƴ<>ӷ<EFBFBD><D3B7><EFBFBD><EFBFBD><EFBFBD>ַ
if(Mqtt_info->pub_topic)
{
free(Mqtt_info->pub_topic);
}
Mqtt_info->pub_topic = publish;
}
reault:
switch(ret)
{
case 0: //<2F>޴<EFBFBD><DEB4><EFBFBD>
case 4: //publish<73><68><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ӱ<EFBFBD><D3B0><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>
return ALiYun_Machine_Init(Mqtt_info, (char*)aliyun_info.productKey, (char*)aliyun_info.deviceName, (char*)aliyun_info.deviceSecret,
(char*)aliyun_info.sublish, keepAlive); //<2F><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
default: //<2F>д<EFBFBD><D0B4><EFBFBD>
Dbg_Println(DBG_BIT_NET_STATUS_bit,"ALIYUN_Flash_Parameter err, Clear ALIYUN_Flash");
memset(&aliyun_info, 0x00, sizeof(ALIYUN_INFO)); //<2F><>0
Flash_Write((uint8_t *)&aliyun_info,sizeof(ALIYUN_INFO) ,FLASH_MCU_MQTT_START_ADDRESS); //<2F><><EFBFBD><EFBFBD>
if(publish) free(publish);
return ret;
}
}
#endif

View File

@@ -0,0 +1,77 @@
#ifndef _ALIYUN_H
#define _ALIYUN_H
#include "mqtt.h"
#define ALIYUN_DOMAIN ".iot-as-mqtt.cn-shanghai.aliyuncs.com" //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̶<EFBFBD><CCB6><EFBFBD>׺
#define ALIYUN_CLIENT_ID "|securemode=3,signmethod=hmacsha1|" //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ClientID<49>̶<EFBFBD><CCB6><EFBFBD>׺
#define ALIYUN_CLIENT_ID2 "|securemode=3,signmethod=hmacsha1,timestamp=789|"
#define CLIENT_ID_KEY "clientId"
#define DEVICE_NAME_KEY "deviceName"
#define PRODUCTKEY_KEY "productKey"
#define NET485_PRODUCTKEY "a12hZXRHLLY"
#define NET485_DEVICE_NAME "NET485_1"
#define NET485_DEVICE_SECRET "804be6c043218f8c6a70175278aeca78"
#define NET485_DEVICE2_NAME "NET485_2"
#define NET485_DEVICE2_SECRET "590301f6291563957d96a329df8a6254"
#define NET485_PUBLISH "/a12hZXRHLLY/NET485_1/user/post"
#define NET485_SUBLISH "/a12hZXRHLLY/NET485_1/user/get"
#define NET485_PUBLISH2 "/a12hZXRHLLY/NET485_2/user/post"
#define NET485_SUBLISH2 "/a12hZXRHLLY/NET485_2/user/get"
#define FRG_PRODUCTKEY "a1STn6qUB4r"
#define FRG_DEVICE_NAME "34D0B8108D15"
#define FRG_DEVICE_SECRET "xlRTX2JSU10Bqp9ldgf4gP79euLGVDxT"
#define FRG_PUBLISH_ALIY "user/update"
#define FRG_PUBLISH "/a1STn6qUB4r/34D0B8108D15/user/update"
#define FRG_SUBLISH "/a1STn6qUB4r/34D0B8108D15/user/get"
#define DEF_PRODUCTKEY "a1STn6qUB4r"
#define DEF_ALIY_PUBLISH "user/update"
#define DEF_ALIY_SUBLISH "user/get"
#define DEF_ALIY_KEEPALIVE 120
#pragma pack(1)
typedef struct
{
/*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA>*/
UINT8 productKey[12]; //productKey
UINT8 deviceName[65]; //<2F><EFBFBD><E8B1B8>
UINT8 deviceSecret[33]; //<2F><EFBFBD><E8B1B8>Կ
UINT8 publish[65]; //<2F><><EFBFBD><EFBFBD><EFBFBD>Ʒ<EFBFBD><C6B7><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD>MQTT<54><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڣ<EFBFBD><DAA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֻ<EFBFBD><D6BB>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7>׺<EFBFBD><D7BA><EFBFBD>ɳ<EFBFBD><C9B3><EFBFBD>ƴ<EFBFBD>ӣ<EFBFBD><D3A3><EFBFBD>mqtt<74><74>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD>ַ<EFBFBD><D6B7>
UINT8 sublish[65]; //<2F><><EFBFBD><EFBFBD><EFBFBD>ƶ<EFBFBD><C6B6>ĵ<EFBFBD>ַ
/*MQTT<54><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*/
MQTT_DATA mqtt_data;
}ALIYUN_INFO;
#pragma pack()
UINT8 ALiYun_Machine_Init(MQTT_INFO* Mqtt_info, char* ProductKey, char* deviceName, char* DeviceSecret, char* sublish, int keepAliveInterval);
UINT8 ALIYUN_Flash_Parameter_Init(MQTT_INFO* Mqtt_info);
#endif

1135
BasicCode/Drive/MQTT/mqtt.c Normal file

File diff suppressed because it is too large Load Diff

166
BasicCode/Drive/MQTT/mqtt.h Normal file
View File

@@ -0,0 +1,166 @@
#ifndef _MQTT_H
#define _MQTT_H
#include "CH57x_common.h" //CH57X <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
#include "MQTTPacket.H"
#include "net.h"
#include "check_fun.h"
#include "SRAM_Variable_Address.h"
#include "BLV_Dev_Action.h"
#ifndef MQTT_EN
#define MQTT_EN 1
#endif
#define USER_NAME "34D0B8108D15&a1STn6qUB4r"
#define PASSWORD "d9c0248ec19854b56d7bb79c30e34c54d68875a6"
#define DOMAIN_NAME "a1STn6qUB4r.iot-as-mqtt.cn-shanghai.aliyuncs.com"
#define CLIENT_ID "34D0B8108D15|securemode=3,signmethod=hmacsha1|"
#define SUB_TOPIC "sub_topic"
#define PUB_TOPIC "pub_topic"
#define SRAM_MQTT_RECEIVE_START 0x030000 //MQTT<54><54><EFBFBD>ջ<EFBFBD><D5BB><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>ַ
#define SRAM_MQTT_RECEIVE_END 0x030FFF //MQTT<54><54><EFBFBD>ջ<EFBFBD><D5BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ
#define SRAM_MQTT_RECEIVE_LEN 0x400 //MQTT<54><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ջ<EFBFBD><D5BB><EFBFBD><E6B3A4>
#define CmdID_LEN 4
#define DeviceID_LEN 6
#define UTCTime_LEN 6
#define CMD_HEAD_ERROR 0x00 //ָ<><D6B8>ͷ<EFBFBD><CDB7><EFBFBD><EFBFBD>
#define CMD_SUCCESS 0x01 //ִ<>гɹ<D0B3>
#define CMD_CRC_ERROR 0x02 //CRC<52><43>֤ʧ<D6A4><CAA7>
#define CMD_DEC_ERROR 0x03 //<2F><><EFBFBD><EFBFBD>ʧ<EFBFBD><CAA7>
#define CMD_DEV_NO 0xe1 //<2F>豸δ<E8B1B8><CEB4><EFBFBD><EFBFBD>
#define SRAM_MQTT_DEVICE_LIST_START 0x031000
#define SRAM_MQTT_DEVICE_LIST_END 0x0313FF
#define Struct_CFG_Dev_Freego_Name_Len 20 //<2F><><EFBFBD>Ƴ<EFBFBD><C6B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define Struct_CFG_Dev_Freego_Map_LEN 24 //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E5B3A4> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>02
#define CFG_Dev_Freego_Map_MAX 40 //֧<>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E8B1B8> <20><><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD><DAB4><EFBFBD>tcp<63><70><EFBFBD><EFBFBD><EFBFBD><EFBFBD>1K<31><4B><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define HtolCpy(pdata, datau32) {pdata[0] = (datau32>>24)&0x000000ff;pdata[1] = (datau32>>16)&0x000000ff; \
pdata[2] = (datau32>>8)&0x000000ff;pdata[3] = (datau32>>0)&0x000000ff;pdata[4] = ((SysTick_1ms%1000)>>8); \
pdata[5] = (SysTick_1ms%1000);}//<2F><>u32<33><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽڴ<D6BD><DAB4><EFBFBD><EFBFBD><EFBFBD>pdata
typedef enum
{
CMD_PKT,
CMDID_PKT,
DEVICE_ID_PKT = 5,
UTC_PKT = 11,
PRAM_PKT = 17,
}FREEG_PKT_E;
#pragma pack(1)
typedef struct
{
UINT8 init_flag:1; /* <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>־λ */
UINT8 con_flag:1; /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>MQTT<54><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>־λ */
UINT8 pub_flag:1; /* <20>ѷ<EFBFBD><D1B7><EFBFBD><EFBFBD><EFBFBD><E1BBB0>Ϣ<EFBFBD><CFA2>־λ */
UINT8 sub_flag:1; /* <20>Ѷ<EFBFBD><D1B6>ĻỰ<C4BB><E1BBB0>־λ */
UINT8 tout_flag:1; /* <20><>ʱ<EFBFBD><CAB1>־λ */
UINT8 domain_dns:1; //mqtt<74><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>־
UINT8 reconnect:2; //<2F><>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
UINT8 dns_en:1; //ʹ<><CAB9><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
UINT8 mqtt_socket:7; //<2F><><EFBFBD><EFBFBD>mqtt <20>׽<EFBFBD><D7BD><EFBFBD>
UINT16 packetid; /* <20><>ID */
UINT8 MyBuf[RECE_BUF_LEN]; /* <20><><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
UINT8 des_ip[4]; //Ŀ<><C4BF>ip
uint16_t keepAliveInterval; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
UINT32 sour_port; //Դ<>˿<EFBFBD>
char* domain_name; //<2F><><EFBFBD><EFBFBD>
char* clientID; //clientID
char *username; /* <20>û<EFBFBD><C3BB><EFBFBD> */
char *password; /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>½<EFBFBD><C2BD><EFBFBD><EFBFBD> */
char *sub_topic; /* <20><><EFBFBD>ĵĻỰ<C4BB><E1BBB0><EFBFBD><EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>Է<EFBFBD><D4B7><EFBFBD><EFBFBD>գ<EFBFBD>Ӧ<EFBFBD><EFBFBD><EBB7A2><EFBFBD>ĻỰ<C4BB><E1BBB0><EFBFBD><EFBFBD>ͬ */
char *pub_topic; /* <20><><EFBFBD><EFBFBD><EFBFBD>ĻỰ*/
UINT32 Sram_read_addr; //MQTT<54><54><EFBFBD>մ<EFBFBD><D5B4><EFBFBD><EFBFBD><EFBFBD>ַ
UINT32 Sram_write_addr; //MQTT<54><54><EFBFBD>յ<EFBFBD>ַ
uint8_t mqtt_sta; //2023-03-17
uint32_t wait_cot; //2023-03-17
uint8_t mqtt_cfail_num; //2023-03-17
}MQTT_INFO;
typedef struct
{
UINT8 publish[65]; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E1BBB0>
UINT8 sublish[65]; //<2F><><EFBFBD>ĻỰ<C4BB><E1BBB0>
}MQTT_THEME; //mqtt<74><74><EFBFBD><EFBFBD>
typedef struct
{
MQTT_THEME mqtt_theme; //<2F><><EFBFBD><EFBFBD>
UINT8 domain_name[65]; //<2F><><EFBFBD><EFBFBD>
UINT8 clientID[65]; //clientID
UINT8 username[65]; /* <20>û<EFBFBD><C3BB><EFBFBD> */
UINT8 password[65]; /* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>½<EFBFBD><C2BD><EFBFBD><EFBFBD> */
}MQTT_BASIC_INFO; //mqtt<74><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
typedef struct
{
uint16_t keepAliveInterval; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
MQTT_BASIC_INFO* mqtt_basic_info; //mqtt<74><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}MQTT_DATA;
//typedef struct CFG_Freego_Map_Add* CFG_Freego_Map_AddP; //<2F><><EFBFBD><EFBFBD>ӳ<EFBFBD><D3B3><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD>ڵ<EFBFBD>ָ<EFBFBD><D6B8> <20><EFBFBD><E1B9B9><EFBFBD><EFBFBD>С<EFBFBD><D0A1>18<31><38><EFBFBD>ֽ<EFBFBD>
typedef struct CFG_Freego_Map_Add
{
/*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Դ<EFBFBD><D4B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ*/
uint8_t ServerDevType; //u8<75><38><EFBFBD><EFBFBD><E8B1B8><EFBFBD>ͣ<EFBFBD><CDA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Դ<EFBFBD><D4B4><EFBFBD><E8B1B8>485<38>
uint8_t ServerDevAddr; //u8<75><38><EFBFBD><EFBFBD><E8B1B8>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Դ<EFBFBD><D4B4><EFBFBD><E8B1B8>ַĬ<D6B7><C4AC>Ϊ0<CEAA><30>485<38><EFBFBD><E8B1B8>ַ<EFBFBD><D6B7>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><E8B1B8>ʵ<EFBFBD>ʵ<EFBFBD>ַ
uint16_t FreegoDevOutputLoop; //<2F><>·<EFBFBD><C2B7>ַ <20>dz<EFBFBD><C7B3><EFBFBD> <20><><EFBFBD>ֽ<EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><20><><EFBFBD><EFBFBD> <20><><EFBFBD>ֽ<EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>
// uint8_t DevLoopAddr[4]; //<2F><EFBFBD><E8B1B8>·<EFBFBD><C2B7>ַ <20>ֱ<EFBFBD><D6B1><EFBFBD>Ӧ<EFBFBD><EFBFBD><E8B1B8><EFBFBD><EFBFBD> <20><EFBFBD><E8B1B8>ַ <20><>·<EFBFBD><C2B7>ַL <20><>·<EFBFBD><C2B7>ַH
uint8_t DevLoopName[20]; //<2F><EFBFBD><E8B1B8>·<EFBFBD><C2B7>ַ<EFBFBD>ı<EFBFBD><C4B1><EFBFBD>
}__attribute__ ((__packed__))Struct_CFG_Freego_Map_Add; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ӳ<EFBFBD><D3B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E1B9B9>
#pragma pack()
#if MQTT_EN
extern MQTT_INFO mqtt_info;
//extern MQTT_INFO mqtt_info2;
#endif
UINT8 Transport_Open(MQTT_INFO* Mqtt_info, UINT8* des_ip, UINT32 sour_port);
UINT8 Transport_Close(UINT8 S);
//void MQTT_Connect(UINT8 S, char *username,char *password);
void MQTT_Connect(UINT8 S, char* clientID, char *username, char *password, int keepAliveInterval);
void MQTT_Subscribe(UINT8 S, char *topic);
void MQTT_Unsubscribe(UINT8 S, char *topic);
//void MQTT_Publish(UINT8 S, char *topic, char *payload);
void MQTT_Publish(UINT8 S, char *topic, UINT8 *payload, int payloadlen, int qos);
void MQTT_Pingreq(UINT8 S);
void MQTT_Disconnect(UINT8 S);
void CH57xNET_CreatTcpSocket(void);
UINT8 MQTT_Init(MQTT_INFO* Mqtt_info, char* domain_name, UINT8* des_ip, char* clientID, char *username, char *password, char* sublish, int keepAliveInterval);
UINT8 MQTT_Flash_Parameter_Init(MQTT_INFO* Mqtt_info);
void MQTT_SET_SUB_Topic(MQTT_INFO* Mqtt_info, char* topic);
void MQTT_SET_PUB_Topic(MQTT_INFO* Mqtt_info, char* topic);
void MQTT_Receive_Processing(void);
#endif

View File

@@ -0,0 +1,162 @@
#include "utils_hmac.h"
#include "utils_md5.h"
#include "utils_sha1.h"
#define KEY_IOPAD_SIZE 64
#define MD5_DIGEST_SIZE 16
#define SHA1_DIGEST_SIZE 20
//const char * base64char = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/*-------------------------------------------------*/
/*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>hmacmd5<64><35><EFBFBD><EFBFBD> */
/*<2A><><EFBFBD><EFBFBD>Ѱ<EFBFBD>ҵĿ<D2B5>Դ<EFBFBD><D4B4><EFBFBD><EFBFBD> */
/*-------------------------------------------------*/
void utils_hmac_md5(const char *msg, int msg_len, char *digest, const char *key, int key_len)
{
unsigned char k_ipad[KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
unsigned char k_opad[KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
unsigned char out[MD5_DIGEST_SIZE];
int i;
iot_md5_context context;
if((NULL == msg) || (NULL == digest) || (NULL == key)) {
return;
}
if(key_len > KEY_IOPAD_SIZE) {
return;
}
/* start out by storing key in pads */
memset(k_ipad, 0, sizeof(k_ipad));
memset(k_opad, 0, sizeof(k_opad));
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < KEY_IOPAD_SIZE; i++) {
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
/* perform inner MD5 */
utils_md5_init(&context); /* init context for 1st pass */
utils_md5_starts(&context); /* setup context for 1st pass */
utils_md5_update(&context, k_ipad, KEY_IOPAD_SIZE); /* start with inner pad */
utils_md5_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */
utils_md5_finish(&context, out); /* finish up 1st pass */
/* perform outer MD5 */
utils_md5_init(&context); /* init context for 2nd pass */
utils_md5_starts(&context); /* setup context for 2nd pass */
utils_md5_update(&context, k_opad, KEY_IOPAD_SIZE); /* start with outer pad */
utils_md5_update(&context, out, MD5_DIGEST_SIZE); /* then results of 1st hash */
utils_md5_finish(&context, out); /* finish up 2nd pass */
for (i = 0; i < MD5_DIGEST_SIZE; ++i) {
digest[i * 2] = utils_hb2hex(out[i] >> 4);
digest[i * 2 + 1] = utils_hb2hex(out[i]);
}
}
/*-------------------------------------------------*/
/*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>hmacsha1<61><31><EFBFBD><EFBFBD> */
/*<2A><><EFBFBD><EFBFBD>Ѱ<EFBFBD>ҵĿ<D2B5>Դ<EFBFBD><D4B4><EFBFBD><EFBFBD> */
/*-------------------------------------------------*/
void utils_hmac_sha1(const char *msg, int msg_len, char *digest, const char *key, int key_len)
{
iot_sha1_context context;
unsigned char k_ipad[KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
unsigned char k_opad[KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
unsigned char out[SHA1_DIGEST_SIZE];
int i;
if((NULL == msg) || (NULL == digest) || (NULL == key)) {
return;
}
if(key_len > KEY_IOPAD_SIZE) {
return;
}
/* start out by storing key in pads */
memset(k_ipad, 0, sizeof(k_ipad));
memset(k_opad, 0, sizeof(k_opad));
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < KEY_IOPAD_SIZE; i++) {
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
/* perform inner SHA */
utils_sha1_init(&context); /* init context for 1st pass */
utils_sha1_starts(&context); /* setup context for 1st pass */
utils_sha1_update(&context, k_ipad, KEY_IOPAD_SIZE); /* start with inner pad */
utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */
utils_sha1_finish(&context, out); /* finish up 1st pass */
/* perform outer SHA */
utils_sha1_init(&context); /* init context for 2nd pass */
utils_sha1_starts(&context); /* setup context for 2nd pass */
utils_sha1_update(&context, k_opad, KEY_IOPAD_SIZE); /* start with outer pad */
utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */
utils_sha1_finish(&context, out); /* finish up 2nd pass */
for (i = 0; i < SHA1_DIGEST_SIZE; ++i) {
digest[i * 2] = utils_hb2hex(out[i] >> 4);
digest[i * 2 + 1] = utils_hb2hex(out[i]);
}
}
///*-------------------------------------------------*/
///*<2A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>base64<36><34><EFBFBD><EFBFBD> */
///*<2A><><EFBFBD><EFBFBD>Ѱ<EFBFBD>ҵĿ<D2B5>Դ<EFBFBD><D4B4><EFBFBD><EFBFBD> */
///*-------------------------------------------------*/
//int base64_decode( const char * base64, unsigned char * bindata )
//{
// int i, j;
// unsigned char k;
// unsigned char temp[4];
// for ( i = 0, j = 0; base64[i] != '\0' ; i += 4 )
// {
// memset( temp, 0xFF, sizeof(temp) );
// for ( k = 0 ; k < 64 ; k ++ )
// {
// if ( base64char[k] == base64[i] )
// temp[0]= k;
// }
// for ( k = 0 ; k < 64 ; k ++ )
// {
// if ( base64char[k] == base64[i+1] )
// temp[1]= k;
// }
// for ( k = 0 ; k < 64 ; k ++ )
// {
// if ( base64char[k] == base64[i+2] )
// temp[2]= k;
// }
// for ( k = 0 ; k < 64 ; k ++ )
// {
// if ( base64char[k] == base64[i+3] )
// temp[3]= k;
// }
// bindata[j++] = ((unsigned char)(((unsigned char)(temp[0] << 2))&0xFC)) |
// ((unsigned char)((unsigned char)(temp[1]>>4)&0x03));
// if ( base64[i+2] == '=' )
// break;
// bindata[j++] = ((unsigned char)(((unsigned char)(temp[1] << 4))&0xF0)) |
// ((unsigned char)((unsigned char)(temp[2]>>2)&0x0F));
// if ( base64[i+3] == '=' )
// break;
// bindata[j++] = ((unsigned char)(((unsigned char)(temp[2] << 6))&0xF0)) |
// ((unsigned char)(temp[3]&0x3F));
// }
// return j;
//}

View File

@@ -0,0 +1,14 @@
#ifndef UTILS_HMAC_H_
#define UTILS_HMAC_H_
#include "stdio.h"
#include "stdint.h"
#include "stdlib.h"
#include "string.h"
void utils_hmac_md5(const char *msg, int msg_len, char *digest, const char *key, int key_len);
void utils_hmac_sha1(const char *msg, int msg_len, char *digest, const char *key, int key_len);
//int base64_decode( const char * base64, unsigned char * bindata );
#endif

View File

@@ -0,0 +1,291 @@
#include "utils_md5.h"
#define MD5_DIGEST_SIZE 16
/* Implementation that should never be optimized out by the compiler */
static void _utils_md5_zeroize(void *v, size_t n)
{
volatile unsigned char *p = v;
while (n--) *p++ = 0;
}
/*
* 32-bit integer manipulation macros (little endian)
*/
#ifndef IOT_MD5_GET_UINT32_LE
#define IOT_MD5_GET_UINT32_LE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 3] << 24 ); \
}
#endif
#ifndef IOT_MD5_PUT_UINT32_LE
#define IOT_MD5_PUT_UINT32_LE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( ( (n) ) & 0xFF ); \
(b)[(i) + 1] = (unsigned char) ( ( (n) >> 8 ) & 0xFF ); \
(b)[(i) + 2] = (unsigned char) ( ( (n) >> 16 ) & 0xFF ); \
(b)[(i) + 3] = (unsigned char) ( ( (n) >> 24 ) & 0xFF ); \
}
#endif
void utils_md5_init(iot_md5_context *ctx)
{
memset(ctx, 0, sizeof(iot_md5_context));
}
void utils_md5_free(iot_md5_context *ctx)
{
if (ctx == NULL) {
return;
}
_utils_md5_zeroize(ctx, sizeof(iot_md5_context));
}
void utils_md5_clone(iot_md5_context *dst,
const iot_md5_context *src)
{
*dst = *src;
}
/*
* MD5 context setup
*/
void utils_md5_starts(iot_md5_context *ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void utils_md5_process(iot_md5_context *ctx, const unsigned char data[64])
{
uint32_t X[16], A, B, C, D;
IOT_MD5_GET_UINT32_LE(X[ 0], data, 0);
IOT_MD5_GET_UINT32_LE(X[ 1], data, 4);
IOT_MD5_GET_UINT32_LE(X[ 2], data, 8);
IOT_MD5_GET_UINT32_LE(X[ 3], data, 12);
IOT_MD5_GET_UINT32_LE(X[ 4], data, 16);
IOT_MD5_GET_UINT32_LE(X[ 5], data, 20);
IOT_MD5_GET_UINT32_LE(X[ 6], data, 24);
IOT_MD5_GET_UINT32_LE(X[ 7], data, 28);
IOT_MD5_GET_UINT32_LE(X[ 8], data, 32);
IOT_MD5_GET_UINT32_LE(X[ 9], data, 36);
IOT_MD5_GET_UINT32_LE(X[10], data, 40);
IOT_MD5_GET_UINT32_LE(X[11], data, 44);
IOT_MD5_GET_UINT32_LE(X[12], data, 48);
IOT_MD5_GET_UINT32_LE(X[13], data, 52);
IOT_MD5_GET_UINT32_LE(X[14], data, 56);
IOT_MD5_GET_UINT32_LE(X[15], data, 60);
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define P(a,b,c,d,k,s,t) \
{ \
a += F(b,c,d) + X[k] + t; a = S(a,s) + b; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
#define F(x,y,z) (z ^ (x & (y ^ z)))
P(A, B, C, D, 0, 7, 0xD76AA478);
P(D, A, B, C, 1, 12, 0xE8C7B756);
P(C, D, A, B, 2, 17, 0x242070DB);
P(B, C, D, A, 3, 22, 0xC1BDCEEE);
P(A, B, C, D, 4, 7, 0xF57C0FAF);
P(D, A, B, C, 5, 12, 0x4787C62A);
P(C, D, A, B, 6, 17, 0xA8304613);
P(B, C, D, A, 7, 22, 0xFD469501);
P(A, B, C, D, 8, 7, 0x698098D8);
P(D, A, B, C, 9, 12, 0x8B44F7AF);
P(C, D, A, B, 10, 17, 0xFFFF5BB1);
P(B, C, D, A, 11, 22, 0x895CD7BE);
P(A, B, C, D, 12, 7, 0x6B901122);
P(D, A, B, C, 13, 12, 0xFD987193);
P(C, D, A, B, 14, 17, 0xA679438E);
P(B, C, D, A, 15, 22, 0x49B40821);
#undef F
#define F(x,y,z) (y ^ (z & (x ^ y)))
P(A, B, C, D, 1, 5, 0xF61E2562);
P(D, A, B, C, 6, 9, 0xC040B340);
P(C, D, A, B, 11, 14, 0x265E5A51);
P(B, C, D, A, 0, 20, 0xE9B6C7AA);
P(A, B, C, D, 5, 5, 0xD62F105D);
P(D, A, B, C, 10, 9, 0x02441453);
P(C, D, A, B, 15, 14, 0xD8A1E681);
P(B, C, D, A, 4, 20, 0xE7D3FBC8);
P(A, B, C, D, 9, 5, 0x21E1CDE6);
P(D, A, B, C, 14, 9, 0xC33707D6);
P(C, D, A, B, 3, 14, 0xF4D50D87);
P(B, C, D, A, 8, 20, 0x455A14ED);
P(A, B, C, D, 13, 5, 0xA9E3E905);
P(D, A, B, C, 2, 9, 0xFCEFA3F8);
P(C, D, A, B, 7, 14, 0x676F02D9);
P(B, C, D, A, 12, 20, 0x8D2A4C8A);
#undef F
#define F(x,y,z) (x ^ y ^ z)
P(A, B, C, D, 5, 4, 0xFFFA3942);
P(D, A, B, C, 8, 11, 0x8771F681);
P(C, D, A, B, 11, 16, 0x6D9D6122);
P(B, C, D, A, 14, 23, 0xFDE5380C);
P(A, B, C, D, 1, 4, 0xA4BEEA44);
P(D, A, B, C, 4, 11, 0x4BDECFA9);
P(C, D, A, B, 7, 16, 0xF6BB4B60);
P(B, C, D, A, 10, 23, 0xBEBFBC70);
P(A, B, C, D, 13, 4, 0x289B7EC6);
P(D, A, B, C, 0, 11, 0xEAA127FA);
P(C, D, A, B, 3, 16, 0xD4EF3085);
P(B, C, D, A, 6, 23, 0x04881D05);
P(A, B, C, D, 9, 4, 0xD9D4D039);
P(D, A, B, C, 12, 11, 0xE6DB99E5);
P(C, D, A, B, 15, 16, 0x1FA27CF8);
P(B, C, D, A, 2, 23, 0xC4AC5665);
#undef F
#define F(x,y,z) (y ^ (x | ~z))
P(A, B, C, D, 0, 6, 0xF4292244);
P(D, A, B, C, 7, 10, 0x432AFF97);
P(C, D, A, B, 14, 15, 0xAB9423A7);
P(B, C, D, A, 5, 21, 0xFC93A039);
P(A, B, C, D, 12, 6, 0x655B59C3);
P(D, A, B, C, 3, 10, 0x8F0CCC92);
P(C, D, A, B, 10, 15, 0xFFEFF47D);
P(B, C, D, A, 1, 21, 0x85845DD1);
P(A, B, C, D, 8, 6, 0x6FA87E4F);
P(D, A, B, C, 15, 10, 0xFE2CE6E0);
P(C, D, A, B, 6, 15, 0xA3014314);
P(B, C, D, A, 13, 21, 0x4E0811A1);
P(A, B, C, D, 4, 6, 0xF7537E82);
P(D, A, B, C, 11, 10, 0xBD3AF235);
P(C, D, A, B, 2, 15, 0x2AD7D2BB);
P(B, C, D, A, 9, 21, 0xEB86D391);
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
}
/*
* MD5 process buffer
*/
void utils_md5_update(iot_md5_context *ctx, const unsigned char *input, size_t ilen)
{
size_t fill;
uint32_t left;
if (ilen == 0) {
return;
}
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *)(ctx->buffer + left), input, fill);
utils_md5_process(ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
utils_md5_process(ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy((void *)(ctx->buffer + left), input, ilen);
}
}
static const unsigned char iot_md5_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* MD5 final digest
*/
void utils_md5_finish(iot_md5_context *ctx, unsigned char output[16])
{
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
IOT_MD5_PUT_UINT32_LE(low, msglen, 0);
IOT_MD5_PUT_UINT32_LE(high, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
utils_md5_update(ctx, iot_md5_padding, padn);
utils_md5_update(ctx, msglen, 8);
IOT_MD5_PUT_UINT32_LE(ctx->state[0], output, 0);
IOT_MD5_PUT_UINT32_LE(ctx->state[1], output, 4);
IOT_MD5_PUT_UINT32_LE(ctx->state[2], output, 8);
IOT_MD5_PUT_UINT32_LE(ctx->state[3], output, 12);
}
/*
* output = MD5( input buffer )
*/
void utils_md5(const unsigned char *input, size_t ilen, unsigned char output[16])
{
iot_md5_context ctx;
utils_md5_init(&ctx);
utils_md5_starts(&ctx);
utils_md5_update(&ctx, input, ilen);
utils_md5_finish(&ctx, output);
utils_md5_free(&ctx);
}
int8_t utils_hb2hex(uint8_t hb)
{
hb = hb & 0xF;
return (int8_t)(hb < 10 ? '0' + hb : hb - 10 + 'a');
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,80 @@
#ifndef UTILS_MD5_H_
#define UTILS_MD5_H_
#include "stdio.h"
#include "stdint.h"
#include "stdlib.h"
#include "string.h"
typedef struct {
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[4]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
} iot_md5_context;
/**
* @brief <20><>ʼ<EFBFBD><CABC>MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*
* @param ctx MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
*/
void utils_md5_init(iot_md5_context *ctx);
/**
* @brief <20><><EFBFBD><EFBFBD>MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*
* @param ctx MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
*/
void utils_md5_free(iot_md5_context *ctx);
/**
* @brief <20><><EFBFBD><EFBFBD>MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*
* @param dst Ŀ<><C4BF>MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param src ԴMD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*/
void utils_md5_clone(iot_md5_context *dst,
const iot_md5_context *src);
/**
* @brief <20><><EFBFBD><EFBFBD>MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*
* @param ctx MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
*/
void utils_md5_starts(iot_md5_context *ctx);
/**
* @brief MD5<44><35><EFBFBD>̻<EFBFBD><CCBB><EFBFBD><EFBFBD><EFBFBD>
*
* @param ctx MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
* @param input <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param ilen <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
*/
void utils_md5_update(iot_md5_context *ctx, const unsigned char *input, size_t ilen);
/**
* @brief MD5<44><35><EFBFBD><EFBFBD>
*
* @param ctx MD5<44><35><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
* @param output MD5У<35><D0A3><EFBFBD>ͽ<EFBFBD><CDBD><EFBFBD>
*/
void utils_md5_finish(iot_md5_context *ctx, unsigned char output[16]);
/* <20>ڲ<EFBFBD>ʹ<EFBFBD><CAB9> */
void utils_md5_process(iot_md5_context *ctx, const unsigned char data[64]);
/**
* @brief Output = MD5( input buffer )
*
* @param input <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* @param ilen <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
* @param output MD5У<35><D0A3><EFBFBD>ͽ<EFBFBD><CDBD><EFBFBD>
*/
void utils_md5(const unsigned char *input, size_t ilen, unsigned char output[16]);
int8_t utils_hb2hex(uint8_t hb);
#endif

View File

@@ -0,0 +1,316 @@
#include "utils_sha1.h"
/* Implementation that should never be optimized out by the compiler */
static void utils_sha1_zeroize(void *v, size_t n)
{
volatile unsigned char *p = v;
while (n--) {
*p++ = 0;
}
}
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef IOT_SHA1_GET_UINT32_BE
#define IOT_SHA1_GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef IOT_SHA1_PUT_UINT32_BE
#define IOT_SHA1_PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
void utils_sha1_init(iot_sha1_context *ctx)
{
memset(ctx, 0, sizeof(iot_sha1_context));
}
void utils_sha1_free(iot_sha1_context *ctx)
{
if (ctx == NULL) {
return;
}
utils_sha1_zeroize(ctx, sizeof(iot_sha1_context));
}
void utils_sha1_clone(iot_sha1_context *dst,
const iot_sha1_context *src)
{
*dst = *src;
}
/*
* SHA-1 context setup
*/
void utils_sha1_starts(iot_sha1_context *ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64])
{
uint32_t temp, W[16], A, B, C, D, E;
IOT_SHA1_GET_UINT32_BE(W[ 0], data, 0);
IOT_SHA1_GET_UINT32_BE(W[ 1], data, 4);
IOT_SHA1_GET_UINT32_BE(W[ 2], data, 8);
IOT_SHA1_GET_UINT32_BE(W[ 3], data, 12);
IOT_SHA1_GET_UINT32_BE(W[ 4], data, 16);
IOT_SHA1_GET_UINT32_BE(W[ 5], data, 20);
IOT_SHA1_GET_UINT32_BE(W[ 6], data, 24);
IOT_SHA1_GET_UINT32_BE(W[ 7], data, 28);
IOT_SHA1_GET_UINT32_BE(W[ 8], data, 32);
IOT_SHA1_GET_UINT32_BE(W[ 9], data, 36);
IOT_SHA1_GET_UINT32_BE(W[10], data, 40);
IOT_SHA1_GET_UINT32_BE(W[11], data, 44);
IOT_SHA1_GET_UINT32_BE(W[12], data, 48);
IOT_SHA1_GET_UINT32_BE(W[13], data, 52);
IOT_SHA1_GET_UINT32_BE(W[14], data, 56);
IOT_SHA1_GET_UINT32_BE(W[15], data, 60);
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) \
( \
temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#define P(a,b,c,d,e,x) \
{ \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P(A, B, C, D, E, W[0]);
P(E, A, B, C, D, W[1]);
P(D, E, A, B, C, W[2]);
P(C, D, E, A, B, W[3]);
P(B, C, D, E, A, W[4]);
P(A, B, C, D, E, W[5]);
P(E, A, B, C, D, W[6]);
P(D, E, A, B, C, W[7]);
P(C, D, E, A, B, W[8]);
P(B, C, D, E, A, W[9]);
P(A, B, C, D, E, W[10]);
P(E, A, B, C, D, W[11]);
P(D, E, A, B, C, W[12]);
P(C, D, E, A, B, W[13]);
P(B, C, D, E, A, W[14]);
P(A, B, C, D, E, W[15]);
P(E, A, B, C, D, R(16));
P(D, E, A, B, C, R(17));
P(C, D, E, A, B, R(18));
P(B, C, D, E, A, R(19));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P(A, B, C, D, E, R(20));
P(E, A, B, C, D, R(21));
P(D, E, A, B, C, R(22));
P(C, D, E, A, B, R(23));
P(B, C, D, E, A, R(24));
P(A, B, C, D, E, R(25));
P(E, A, B, C, D, R(26));
P(D, E, A, B, C, R(27));
P(C, D, E, A, B, R(28));
P(B, C, D, E, A, R(29));
P(A, B, C, D, E, R(30));
P(E, A, B, C, D, R(31));
P(D, E, A, B, C, R(32));
P(C, D, E, A, B, R(33));
P(B, C, D, E, A, R(34));
P(A, B, C, D, E, R(35));
P(E, A, B, C, D, R(36));
P(D, E, A, B, C, R(37));
P(C, D, E, A, B, R(38));
P(B, C, D, E, A, R(39));
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P(A, B, C, D, E, R(40));
P(E, A, B, C, D, R(41));
P(D, E, A, B, C, R(42));
P(C, D, E, A, B, R(43));
P(B, C, D, E, A, R(44));
P(A, B, C, D, E, R(45));
P(E, A, B, C, D, R(46));
P(D, E, A, B, C, R(47));
P(C, D, E, A, B, R(48));
P(B, C, D, E, A, R(49));
P(A, B, C, D, E, R(50));
P(E, A, B, C, D, R(51));
P(D, E, A, B, C, R(52));
P(C, D, E, A, B, R(53));
P(B, C, D, E, A, R(54));
P(A, B, C, D, E, R(55));
P(E, A, B, C, D, R(56));
P(D, E, A, B, C, R(57));
P(C, D, E, A, B, R(58));
P(B, C, D, E, A, R(59));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P(A, B, C, D, E, R(60));
P(E, A, B, C, D, R(61));
P(D, E, A, B, C, R(62));
P(C, D, E, A, B, R(63));
P(B, C, D, E, A, R(64));
P(A, B, C, D, E, R(65));
P(E, A, B, C, D, R(66));
P(D, E, A, B, C, R(67));
P(C, D, E, A, B, R(68));
P(B, C, D, E, A, R(69));
P(A, B, C, D, E, R(70));
P(E, A, B, C, D, R(71));
P(D, E, A, B, C, R(72));
P(C, D, E, A, B, R(73));
P(B, C, D, E, A, R(74));
P(A, B, C, D, E, R(75));
P(E, A, B, C, D, R(76));
P(D, E, A, B, C, R(77));
P(C, D, E, A, B, R(78));
P(B, C, D, E, A, R(79));
#undef K
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
/*
* SHA-1 process buffer
*/
void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, size_t ilen)
{
size_t fill;
uint32_t left;
if (ilen == 0) {
return;
}
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *)(ctx->buffer + left), input, fill);
utils_sha1_process(ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
utils_sha1_process(ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy((void *)(ctx->buffer + left), input, ilen);
}
}
static const unsigned char iot_sha1_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* SHA-1 final digest
*/
void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20])
{
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
IOT_SHA1_PUT_UINT32_BE(high, msglen, 0);
IOT_SHA1_PUT_UINT32_BE(low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
utils_sha1_update(ctx, iot_sha1_padding, padn);
utils_sha1_update(ctx, msglen, 8);
IOT_SHA1_PUT_UINT32_BE(ctx->state[0], output, 0);
IOT_SHA1_PUT_UINT32_BE(ctx->state[1], output, 4);
IOT_SHA1_PUT_UINT32_BE(ctx->state[2], output, 8);
IOT_SHA1_PUT_UINT32_BE(ctx->state[3], output, 12);
IOT_SHA1_PUT_UINT32_BE(ctx->state[4], output, 16);
}
/*
* output = SHA-1( input buffer )
*/
void utils_sha1(const unsigned char *input, size_t ilen, unsigned char output[20])
{
iot_sha1_context ctx;
utils_sha1_init(&ctx);
utils_sha1_starts(&ctx);
utils_sha1_update(&ctx, input, ilen);
utils_sha1_finish(&ctx, output);
utils_sha1_free(&ctx);
}

View File

@@ -0,0 +1,78 @@
#ifndef UTILS_SHA1_H_
#define UTILS_SHA1_H_
#include "stdio.h"
#include "stdint.h"
#include "stdlib.h"
#include "string.h"
/**
* \brief SHA-1 context structure
*/
typedef struct {
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[5]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
} iot_sha1_context;
/**
* \brief Initialize SHA-1 context
*
* \param ctx SHA-1 context to be initialized
*/
void utils_sha1_init(iot_sha1_context *ctx);
/**
* \brief Clear SHA-1 context
*
* \param ctx SHA-1 context to be cleared
*/
void utils_sha1_free(iot_sha1_context *ctx);
/**
* \brief Clone (the state of) a SHA-1 context
*
* \param dst The destination context
* \param src The context to be cloned
*/
void utils_sha1_clone(iot_sha1_context *dst,
const iot_sha1_context *src);
/**
* \brief SHA-1 context setup
*
* \param ctx context to be initialized
*/
void utils_sha1_starts(iot_sha1_context *ctx);
/**
* \brief SHA-1 process buffer
*
* \param ctx SHA-1 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, size_t ilen);
/**
* \brief SHA-1 final digest
*
* \param ctx SHA-1 context
* \param output SHA-1 checksum result
*/
void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20]);
/* Internal use */
void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64]);
/**
* \brief Output = SHA-1( input buffer )
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-1 checksum result
*/
void utils_sha1(const unsigned char *input, size_t ilen, unsigned char output[20]);
#endif