初始化项目
This commit is contained in:
BIN
.shared/ui-ux-pro-max/scripts/__pycache__/core.cpython-312.pyc
Normal file
BIN
.shared/ui-ux-pro-max/scripts/__pycache__/core.cpython-312.pyc
Normal file
Binary file not shown.
Binary file not shown.
257
.shared/ui-ux-pro-max/scripts/core.py
Normal file
257
.shared/ui-ux-pro-max/scripts/core.py
Normal file
@@ -0,0 +1,257 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
UI/UX Pro Max Core - BM25 search engine for UI/UX style guides
|
||||
"""
|
||||
|
||||
import csv
|
||||
import re
|
||||
from pathlib import Path
|
||||
from math import log
|
||||
from collections import defaultdict
|
||||
|
||||
# ============ CONFIGURATION ============
|
||||
DATA_DIR = Path(__file__).parent.parent / "data"
|
||||
MAX_RESULTS = 3
|
||||
|
||||
CSV_CONFIG = {
|
||||
"style": {
|
||||
"file": "styles.csv",
|
||||
"search_cols": ["Style Category", "Keywords", "Best For", "Type"],
|
||||
"output_cols": ["Style Category", "Type", "Keywords", "Primary Colors", "Effects & Animation", "Best For", "Performance", "Accessibility", "Framework Compatibility", "Complexity"]
|
||||
},
|
||||
"prompt": {
|
||||
"file": "prompts.csv",
|
||||
"search_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords"],
|
||||
"output_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords", "Implementation Checklist"]
|
||||
},
|
||||
"color": {
|
||||
"file": "colors.csv",
|
||||
"search_cols": ["Product Type", "Keywords", "Notes"],
|
||||
"output_cols": ["Product Type", "Keywords", "Primary (Hex)", "Secondary (Hex)", "CTA (Hex)", "Background (Hex)", "Text (Hex)", "Border (Hex)", "Notes"]
|
||||
},
|
||||
"chart": {
|
||||
"file": "charts.csv",
|
||||
"search_cols": ["Data Type", "Keywords", "Best Chart Type", "Accessibility Notes"],
|
||||
"output_cols": ["Data Type", "Keywords", "Best Chart Type", "Secondary Options", "Color Guidance", "Accessibility Notes", "Library Recommendation", "Interactive Level"]
|
||||
},
|
||||
"landing": {
|
||||
"file": "landing.csv",
|
||||
"search_cols": ["Pattern Name", "Keywords", "Conversion Optimization", "Section Order"],
|
||||
"output_cols": ["Pattern Name", "Keywords", "Section Order", "Primary CTA Placement", "Color Strategy", "Conversion Optimization"]
|
||||
},
|
||||
"product": {
|
||||
"file": "products.csv",
|
||||
"search_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Key Considerations"],
|
||||
"output_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Secondary Styles", "Landing Page Pattern", "Dashboard Style (if applicable)", "Color Palette Focus"]
|
||||
},
|
||||
"ux": {
|
||||
"file": "ux-guidelines.csv",
|
||||
"search_cols": ["Category", "Issue", "Description", "Platform"],
|
||||
"output_cols": ["Category", "Issue", "Platform", "Description", "Do", "Don't", "Code Example Good", "Code Example Bad", "Severity"]
|
||||
},
|
||||
"typography": {
|
||||
"file": "typography.csv",
|
||||
"search_cols": ["Font Pairing Name", "Category", "Mood/Style Keywords", "Best For", "Heading Font", "Body Font"],
|
||||
"output_cols": ["Font Pairing Name", "Category", "Heading Font", "Body Font", "Mood/Style Keywords", "Best For", "Google Fonts URL", "CSS Import", "Tailwind Config", "Notes"]
|
||||
},
|
||||
"icons": {
|
||||
"file": "icons.csv",
|
||||
"search_cols": ["Category", "Icon Name", "Keywords", "Best For"],
|
||||
"output_cols": ["Category", "Icon Name", "Keywords", "Library", "Import Code", "Usage", "Best For", "Style"]
|
||||
},
|
||||
"react": {
|
||||
"file": "react-performance.csv",
|
||||
"search_cols": ["Category", "Issue", "Keywords", "Description"],
|
||||
"output_cols": ["Category", "Issue", "Platform", "Description", "Do", "Don't", "Code Example Good", "Code Example Bad", "Severity"]
|
||||
},
|
||||
"web": {
|
||||
"file": "web-interface.csv",
|
||||
"search_cols": ["Category", "Issue", "Keywords", "Description"],
|
||||
"output_cols": ["Category", "Issue", "Platform", "Description", "Do", "Don't", "Code Example Good", "Code Example Bad", "Severity"]
|
||||
}
|
||||
}
|
||||
|
||||
STACK_CONFIG = {
|
||||
"html-tailwind": {"file": "stacks/html-tailwind.csv"},
|
||||
"react": {"file": "stacks/react.csv"},
|
||||
"nextjs": {"file": "stacks/nextjs.csv"},
|
||||
"vue": {"file": "stacks/vue.csv"},
|
||||
"nuxtjs": {"file": "stacks/nuxtjs.csv"},
|
||||
"nuxt-ui": {"file": "stacks/nuxt-ui.csv"},
|
||||
"svelte": {"file": "stacks/svelte.csv"},
|
||||
"swiftui": {"file": "stacks/swiftui.csv"},
|
||||
"react-native": {"file": "stacks/react-native.csv"},
|
||||
"flutter": {"file": "stacks/flutter.csv"},
|
||||
"shadcn": {"file": "stacks/shadcn.csv"}
|
||||
}
|
||||
|
||||
# Common columns for all stacks
|
||||
_STACK_COLS = {
|
||||
"search_cols": ["Category", "Guideline", "Description", "Do", "Don't"],
|
||||
"output_cols": ["Category", "Guideline", "Description", "Do", "Don't", "Code Good", "Code Bad", "Severity", "Docs URL"]
|
||||
}
|
||||
|
||||
AVAILABLE_STACKS = list(STACK_CONFIG.keys())
|
||||
|
||||
|
||||
# ============ BM25 IMPLEMENTATION ============
|
||||
class BM25:
|
||||
"""BM25 ranking algorithm for text search"""
|
||||
|
||||
def __init__(self, k1=1.5, b=0.75):
|
||||
self.k1 = k1
|
||||
self.b = b
|
||||
self.corpus = []
|
||||
self.doc_lengths = []
|
||||
self.avgdl = 0
|
||||
self.idf = {}
|
||||
self.doc_freqs = defaultdict(int)
|
||||
self.N = 0
|
||||
|
||||
def tokenize(self, text):
|
||||
"""Lowercase, split, remove punctuation, filter short words"""
|
||||
text = re.sub(r'[^\w\s]', ' ', str(text).lower())
|
||||
return [w for w in text.split() if len(w) > 2]
|
||||
|
||||
def fit(self, documents):
|
||||
"""Build BM25 index from documents"""
|
||||
self.corpus = [self.tokenize(doc) for doc in documents]
|
||||
self.N = len(self.corpus)
|
||||
if self.N == 0:
|
||||
return
|
||||
self.doc_lengths = [len(doc) for doc in self.corpus]
|
||||
self.avgdl = sum(self.doc_lengths) / self.N
|
||||
|
||||
for doc in self.corpus:
|
||||
seen = set()
|
||||
for word in doc:
|
||||
if word not in seen:
|
||||
self.doc_freqs[word] += 1
|
||||
seen.add(word)
|
||||
|
||||
for word, freq in self.doc_freqs.items():
|
||||
self.idf[word] = log((self.N - freq + 0.5) / (freq + 0.5) + 1)
|
||||
|
||||
def score(self, query):
|
||||
"""Score all documents against query"""
|
||||
query_tokens = self.tokenize(query)
|
||||
scores = []
|
||||
|
||||
for idx, doc in enumerate(self.corpus):
|
||||
score = 0
|
||||
doc_len = self.doc_lengths[idx]
|
||||
term_freqs = defaultdict(int)
|
||||
for word in doc:
|
||||
term_freqs[word] += 1
|
||||
|
||||
for token in query_tokens:
|
||||
if token in self.idf:
|
||||
tf = term_freqs[token]
|
||||
idf = self.idf[token]
|
||||
numerator = tf * (self.k1 + 1)
|
||||
denominator = tf + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)
|
||||
score += idf * numerator / denominator
|
||||
|
||||
scores.append((idx, score))
|
||||
|
||||
return sorted(scores, key=lambda x: x[1], reverse=True)
|
||||
|
||||
|
||||
# ============ SEARCH FUNCTIONS ============
|
||||
def _load_csv(filepath):
|
||||
"""Load CSV and return list of dicts"""
|
||||
with open(filepath, 'r', encoding='utf-8') as f:
|
||||
return list(csv.DictReader(f))
|
||||
|
||||
|
||||
def _search_csv(filepath, search_cols, output_cols, query, max_results):
|
||||
"""Core search function using BM25"""
|
||||
if not filepath.exists():
|
||||
return []
|
||||
|
||||
data = _load_csv(filepath)
|
||||
|
||||
# Build documents from search columns
|
||||
documents = [" ".join(str(row.get(col, "")) for col in search_cols) for row in data]
|
||||
|
||||
# BM25 search
|
||||
bm25 = BM25()
|
||||
bm25.fit(documents)
|
||||
ranked = bm25.score(query)
|
||||
|
||||
# Get top results with score > 0
|
||||
results = []
|
||||
for idx, score in ranked[:max_results]:
|
||||
if score > 0:
|
||||
row = data[idx]
|
||||
results.append({col: row.get(col, "") for col in output_cols if col in row})
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def detect_domain(query):
|
||||
"""Auto-detect the most relevant domain from query"""
|
||||
query_lower = query.lower()
|
||||
|
||||
domain_keywords = {
|
||||
"color": ["color", "palette", "hex", "#", "rgb"],
|
||||
"chart": ["chart", "graph", "visualization", "trend", "bar", "pie", "scatter", "heatmap", "funnel"],
|
||||
"landing": ["landing", "page", "cta", "conversion", "hero", "testimonial", "pricing", "section"],
|
||||
"product": ["saas", "ecommerce", "e-commerce", "fintech", "healthcare", "gaming", "portfolio", "crypto", "dashboard"],
|
||||
"prompt": ["prompt", "css", "implementation", "variable", "checklist", "tailwind"],
|
||||
"style": ["style", "design", "ui", "minimalism", "glassmorphism", "neumorphism", "brutalism", "dark mode", "flat", "aurora"],
|
||||
"ux": ["ux", "usability", "accessibility", "wcag", "touch", "scroll", "animation", "keyboard", "navigation", "mobile"],
|
||||
"typography": ["font", "typography", "heading", "serif", "sans"],
|
||||
"icons": ["icon", "icons", "lucide", "heroicons", "symbol", "glyph", "pictogram", "svg icon"],
|
||||
"react": ["react", "next.js", "nextjs", "suspense", "memo", "usecallback", "useeffect", "rerender", "bundle", "waterfall", "barrel", "dynamic import", "rsc", "server component"],
|
||||
"web": ["aria", "focus", "outline", "semantic", "virtualize", "autocomplete", "form", "input type", "preconnect"]
|
||||
}
|
||||
|
||||
scores = {domain: sum(1 for kw in keywords if kw in query_lower) for domain, keywords in domain_keywords.items()}
|
||||
best = max(scores, key=scores.get)
|
||||
return best if scores[best] > 0 else "style"
|
||||
|
||||
|
||||
def search(query, domain=None, max_results=MAX_RESULTS):
|
||||
"""Main search function with auto-domain detection"""
|
||||
if domain is None:
|
||||
domain = detect_domain(query)
|
||||
|
||||
config = CSV_CONFIG.get(domain, CSV_CONFIG["style"])
|
||||
filepath = DATA_DIR / config["file"]
|
||||
|
||||
if not filepath.exists():
|
||||
return {"error": f"File not found: {filepath}", "domain": domain}
|
||||
|
||||
results = _search_csv(filepath, config["search_cols"], config["output_cols"], query, max_results)
|
||||
|
||||
return {
|
||||
"domain": domain,
|
||||
"query": query,
|
||||
"file": config["file"],
|
||||
"count": len(results),
|
||||
"results": results
|
||||
}
|
||||
|
||||
|
||||
def search_stack(query, stack, max_results=MAX_RESULTS):
|
||||
"""Search stack-specific guidelines"""
|
||||
if stack not in STACK_CONFIG:
|
||||
return {"error": f"Unknown stack: {stack}. Available: {', '.join(AVAILABLE_STACKS)}"}
|
||||
|
||||
filepath = DATA_DIR / STACK_CONFIG[stack]["file"]
|
||||
|
||||
if not filepath.exists():
|
||||
return {"error": f"Stack file not found: {filepath}", "stack": stack}
|
||||
|
||||
results = _search_csv(filepath, _STACK_COLS["search_cols"], _STACK_COLS["output_cols"], query, max_results)
|
||||
|
||||
return {
|
||||
"domain": "stack",
|
||||
"stack": stack,
|
||||
"query": query,
|
||||
"file": STACK_CONFIG[stack]["file"],
|
||||
"count": len(results),
|
||||
"results": results
|
||||
}
|
||||
487
.shared/ui-ux-pro-max/scripts/design_system.py
Normal file
487
.shared/ui-ux-pro-max/scripts/design_system.py
Normal file
@@ -0,0 +1,487 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Design System Generator - Aggregates search results and applies reasoning
|
||||
to generate comprehensive design system recommendations.
|
||||
|
||||
Usage:
|
||||
from design_system import generate_design_system
|
||||
result = generate_design_system("SaaS dashboard", "My Project")
|
||||
"""
|
||||
|
||||
import csv
|
||||
import json
|
||||
from pathlib import Path
|
||||
from core import search, DATA_DIR
|
||||
|
||||
|
||||
# ============ CONFIGURATION ============
|
||||
REASONING_FILE = "ui-reasoning.csv"
|
||||
|
||||
SEARCH_CONFIG = {
|
||||
"product": {"max_results": 1},
|
||||
"style": {"max_results": 3},
|
||||
"color": {"max_results": 2},
|
||||
"landing": {"max_results": 2},
|
||||
"typography": {"max_results": 2}
|
||||
}
|
||||
|
||||
|
||||
# ============ DESIGN SYSTEM GENERATOR ============
|
||||
class DesignSystemGenerator:
|
||||
"""Generates design system recommendations from aggregated searches."""
|
||||
|
||||
def __init__(self):
|
||||
self.reasoning_data = self._load_reasoning()
|
||||
|
||||
def _load_reasoning(self) -> list:
|
||||
"""Load reasoning rules from CSV."""
|
||||
filepath = DATA_DIR / REASONING_FILE
|
||||
if not filepath.exists():
|
||||
return []
|
||||
with open(filepath, 'r', encoding='utf-8') as f:
|
||||
return list(csv.DictReader(f))
|
||||
|
||||
def _multi_domain_search(self, query: str, style_priority: list = None) -> dict:
|
||||
"""Execute searches across multiple domains."""
|
||||
results = {}
|
||||
for domain, config in SEARCH_CONFIG.items():
|
||||
if domain == "style" and style_priority:
|
||||
# For style, also search with priority keywords
|
||||
priority_query = " ".join(style_priority[:2]) if style_priority else query
|
||||
combined_query = f"{query} {priority_query}"
|
||||
results[domain] = search(combined_query, domain, config["max_results"])
|
||||
else:
|
||||
results[domain] = search(query, domain, config["max_results"])
|
||||
return results
|
||||
|
||||
def _find_reasoning_rule(self, category: str) -> dict:
|
||||
"""Find matching reasoning rule for a category."""
|
||||
category_lower = category.lower()
|
||||
|
||||
# Try exact match first
|
||||
for rule in self.reasoning_data:
|
||||
if rule.get("UI_Category", "").lower() == category_lower:
|
||||
return rule
|
||||
|
||||
# Try partial match
|
||||
for rule in self.reasoning_data:
|
||||
ui_cat = rule.get("UI_Category", "").lower()
|
||||
if ui_cat in category_lower or category_lower in ui_cat:
|
||||
return rule
|
||||
|
||||
# Try keyword match
|
||||
for rule in self.reasoning_data:
|
||||
ui_cat = rule.get("UI_Category", "").lower()
|
||||
keywords = ui_cat.replace("/", " ").replace("-", " ").split()
|
||||
if any(kw in category_lower for kw in keywords):
|
||||
return rule
|
||||
|
||||
return {}
|
||||
|
||||
def _apply_reasoning(self, category: str, search_results: dict) -> dict:
|
||||
"""Apply reasoning rules to search results."""
|
||||
rule = self._find_reasoning_rule(category)
|
||||
|
||||
if not rule:
|
||||
return {
|
||||
"pattern": "Hero + Features + CTA",
|
||||
"style_priority": ["Minimalism", "Flat Design"],
|
||||
"color_mood": "Professional",
|
||||
"typography_mood": "Clean",
|
||||
"key_effects": "Subtle hover transitions",
|
||||
"anti_patterns": "",
|
||||
"decision_rules": {},
|
||||
"severity": "MEDIUM"
|
||||
}
|
||||
|
||||
# Parse decision rules JSON
|
||||
decision_rules = {}
|
||||
try:
|
||||
decision_rules = json.loads(rule.get("Decision_Rules", "{}"))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
return {
|
||||
"pattern": rule.get("Recommended_Pattern", ""),
|
||||
"style_priority": [s.strip() for s in rule.get("Style_Priority", "").split("+")],
|
||||
"color_mood": rule.get("Color_Mood", ""),
|
||||
"typography_mood": rule.get("Typography_Mood", ""),
|
||||
"key_effects": rule.get("Key_Effects", ""),
|
||||
"anti_patterns": rule.get("Anti_Patterns", ""),
|
||||
"decision_rules": decision_rules,
|
||||
"severity": rule.get("Severity", "MEDIUM")
|
||||
}
|
||||
|
||||
def _select_best_match(self, results: list, priority_keywords: list) -> dict:
|
||||
"""Select best matching result based on priority keywords."""
|
||||
if not results:
|
||||
return {}
|
||||
|
||||
if not priority_keywords:
|
||||
return results[0]
|
||||
|
||||
# First: try exact style name match
|
||||
for priority in priority_keywords:
|
||||
priority_lower = priority.lower().strip()
|
||||
for result in results:
|
||||
style_name = result.get("Style Category", "").lower()
|
||||
if priority_lower in style_name or style_name in priority_lower:
|
||||
return result
|
||||
|
||||
# Second: score by keyword match in all fields
|
||||
scored = []
|
||||
for result in results:
|
||||
result_str = str(result).lower()
|
||||
score = 0
|
||||
for kw in priority_keywords:
|
||||
kw_lower = kw.lower().strip()
|
||||
# Higher score for style name match
|
||||
if kw_lower in result.get("Style Category", "").lower():
|
||||
score += 10
|
||||
# Lower score for keyword field match
|
||||
elif kw_lower in result.get("Keywords", "").lower():
|
||||
score += 3
|
||||
# Even lower for other field matches
|
||||
elif kw_lower in result_str:
|
||||
score += 1
|
||||
scored.append((score, result))
|
||||
|
||||
scored.sort(key=lambda x: x[0], reverse=True)
|
||||
return scored[0][1] if scored and scored[0][0] > 0 else results[0]
|
||||
|
||||
def _extract_results(self, search_result: dict) -> list:
|
||||
"""Extract results list from search result dict."""
|
||||
return search_result.get("results", [])
|
||||
|
||||
def generate(self, query: str, project_name: str = None) -> dict:
|
||||
"""Generate complete design system recommendation."""
|
||||
# Step 1: First search product to get category
|
||||
product_result = search(query, "product", 1)
|
||||
product_results = product_result.get("results", [])
|
||||
category = "General"
|
||||
if product_results:
|
||||
category = product_results[0].get("Product Type", "General")
|
||||
|
||||
# Step 2: Get reasoning rules for this category
|
||||
reasoning = self._apply_reasoning(category, {})
|
||||
style_priority = reasoning.get("style_priority", [])
|
||||
|
||||
# Step 3: Multi-domain search with style priority hints
|
||||
search_results = self._multi_domain_search(query, style_priority)
|
||||
search_results["product"] = product_result # Reuse product search
|
||||
|
||||
# Step 4: Select best matches from each domain using priority
|
||||
style_results = self._extract_results(search_results.get("style", {}))
|
||||
color_results = self._extract_results(search_results.get("color", {}))
|
||||
typography_results = self._extract_results(search_results.get("typography", {}))
|
||||
landing_results = self._extract_results(search_results.get("landing", {}))
|
||||
|
||||
best_style = self._select_best_match(style_results, reasoning.get("style_priority", []))
|
||||
best_color = color_results[0] if color_results else {}
|
||||
best_typography = typography_results[0] if typography_results else {}
|
||||
best_landing = landing_results[0] if landing_results else {}
|
||||
|
||||
# Step 5: Build final recommendation
|
||||
# Combine effects from both reasoning and style search
|
||||
style_effects = best_style.get("Effects & Animation", "")
|
||||
reasoning_effects = reasoning.get("key_effects", "")
|
||||
combined_effects = style_effects if style_effects else reasoning_effects
|
||||
|
||||
return {
|
||||
"project_name": project_name or query.upper(),
|
||||
"category": category,
|
||||
"pattern": {
|
||||
"name": best_landing.get("Pattern Name", reasoning.get("pattern", "Hero + Features + CTA")),
|
||||
"sections": best_landing.get("Section Order", "Hero > Features > CTA"),
|
||||
"cta_placement": best_landing.get("Primary CTA Placement", "Above fold"),
|
||||
"color_strategy": best_landing.get("Color Strategy", ""),
|
||||
"conversion": best_landing.get("Conversion Optimization", "")
|
||||
},
|
||||
"style": {
|
||||
"name": best_style.get("Style Category", "Minimalism"),
|
||||
"type": best_style.get("Type", "General"),
|
||||
"effects": style_effects,
|
||||
"keywords": best_style.get("Keywords", ""),
|
||||
"best_for": best_style.get("Best For", ""),
|
||||
"performance": best_style.get("Performance", ""),
|
||||
"accessibility": best_style.get("Accessibility", "")
|
||||
},
|
||||
"colors": {
|
||||
"primary": best_color.get("Primary (Hex)", "#2563EB"),
|
||||
"secondary": best_color.get("Secondary (Hex)", "#3B82F6"),
|
||||
"cta": best_color.get("CTA (Hex)", "#F97316"),
|
||||
"background": best_color.get("Background (Hex)", "#F8FAFC"),
|
||||
"text": best_color.get("Text (Hex)", "#1E293B"),
|
||||
"notes": best_color.get("Notes", "")
|
||||
},
|
||||
"typography": {
|
||||
"heading": best_typography.get("Heading Font", "Inter"),
|
||||
"body": best_typography.get("Body Font", "Inter"),
|
||||
"mood": best_typography.get("Mood/Style Keywords", reasoning.get("typography_mood", "")),
|
||||
"best_for": best_typography.get("Best For", ""),
|
||||
"google_fonts_url": best_typography.get("Google Fonts URL", ""),
|
||||
"css_import": best_typography.get("CSS Import", "")
|
||||
},
|
||||
"key_effects": combined_effects,
|
||||
"anti_patterns": reasoning.get("anti_patterns", ""),
|
||||
"decision_rules": reasoning.get("decision_rules", {}),
|
||||
"severity": reasoning.get("severity", "MEDIUM")
|
||||
}
|
||||
|
||||
|
||||
# ============ OUTPUT FORMATTERS ============
|
||||
BOX_WIDTH = 90 # Wider box for more content
|
||||
|
||||
def format_ascii_box(design_system: dict) -> str:
|
||||
"""Format design system as ASCII box with emojis (MCP-style)."""
|
||||
project = design_system.get("project_name", "PROJECT")
|
||||
pattern = design_system.get("pattern", {})
|
||||
style = design_system.get("style", {})
|
||||
colors = design_system.get("colors", {})
|
||||
typography = design_system.get("typography", {})
|
||||
effects = design_system.get("key_effects", "")
|
||||
anti_patterns = design_system.get("anti_patterns", "")
|
||||
|
||||
def wrap_text(text: str, prefix: str, width: int) -> list:
|
||||
"""Wrap long text into multiple lines."""
|
||||
if not text:
|
||||
return []
|
||||
words = text.split()
|
||||
lines = []
|
||||
current_line = prefix
|
||||
for word in words:
|
||||
if len(current_line) + len(word) + 1 <= width - 2:
|
||||
current_line += (" " if current_line != prefix else "") + word
|
||||
else:
|
||||
if current_line != prefix:
|
||||
lines.append(current_line)
|
||||
current_line = prefix + word
|
||||
if current_line != prefix:
|
||||
lines.append(current_line)
|
||||
return lines
|
||||
|
||||
# Build sections from pattern
|
||||
sections = pattern.get("sections", "").split(">")
|
||||
sections = [s.strip() for s in sections if s.strip()]
|
||||
|
||||
# Build output lines
|
||||
lines = []
|
||||
w = BOX_WIDTH - 1
|
||||
|
||||
lines.append("+" + "-" * w + "+")
|
||||
lines.append(f"| TARGET: {project} - RECOMMENDED DESIGN SYSTEM".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("+" + "-" * w + "+")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Pattern section
|
||||
lines.append(f"| PATTERN: {pattern.get('name', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if pattern.get('conversion'):
|
||||
lines.append(f"| Conversion: {pattern.get('conversion', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if pattern.get('cta_placement'):
|
||||
lines.append(f"| CTA: {pattern.get('cta_placement', '')}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("| Sections:".ljust(BOX_WIDTH) + "|")
|
||||
for i, section in enumerate(sections, 1):
|
||||
lines.append(f"| {i}. {section}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Style section
|
||||
lines.append(f"| STYLE: {style.get('name', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if style.get("keywords"):
|
||||
for line in wrap_text(f"Keywords: {style.get('keywords', '')}", "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
if style.get("best_for"):
|
||||
for line in wrap_text(f"Best For: {style.get('best_for', '')}", "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
if style.get("performance") or style.get("accessibility"):
|
||||
perf_a11y = f"Performance: {style.get('performance', '')} | Accessibility: {style.get('accessibility', '')}"
|
||||
lines.append(f"| {perf_a11y}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Colors section
|
||||
lines.append("| COLORS:".ljust(BOX_WIDTH) + "|")
|
||||
lines.append(f"| Primary: {colors.get('primary', '')}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append(f"| Secondary: {colors.get('secondary', '')}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append(f"| CTA: {colors.get('cta', '')}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append(f"| Background: {colors.get('background', '')}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append(f"| Text: {colors.get('text', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if colors.get("notes"):
|
||||
for line in wrap_text(f"Notes: {colors.get('notes', '')}", "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Typography section
|
||||
lines.append(f"| TYPOGRAPHY: {typography.get('heading', '')} / {typography.get('body', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if typography.get("mood"):
|
||||
for line in wrap_text(f"Mood: {typography.get('mood', '')}", "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
if typography.get("best_for"):
|
||||
for line in wrap_text(f"Best For: {typography.get('best_for', '')}", "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
if typography.get("google_fonts_url"):
|
||||
lines.append(f"| Google Fonts: {typography.get('google_fonts_url', '')}".ljust(BOX_WIDTH) + "|")
|
||||
if typography.get("css_import"):
|
||||
lines.append(f"| CSS Import: {typography.get('css_import', '')[:70]}...".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Key Effects section
|
||||
if effects:
|
||||
lines.append("| KEY EFFECTS:".ljust(BOX_WIDTH) + "|")
|
||||
for line in wrap_text(effects, "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Anti-patterns section
|
||||
if anti_patterns:
|
||||
lines.append("| AVOID (Anti-patterns):".ljust(BOX_WIDTH) + "|")
|
||||
for line in wrap_text(anti_patterns, "| ", BOX_WIDTH):
|
||||
lines.append(line.ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
# Pre-Delivery Checklist section
|
||||
lines.append("| PRE-DELIVERY CHECKLIST:".ljust(BOX_WIDTH) + "|")
|
||||
checklist_items = [
|
||||
"[ ] No emojis as icons (use SVG: Heroicons/Lucide)",
|
||||
"[ ] cursor-pointer on all clickable elements",
|
||||
"[ ] Hover states with smooth transitions (150-300ms)",
|
||||
"[ ] Light mode: text contrast 4.5:1 minimum",
|
||||
"[ ] Focus states visible for keyboard nav",
|
||||
"[ ] prefers-reduced-motion respected",
|
||||
"[ ] Responsive: 375px, 768px, 1024px, 1440px"
|
||||
]
|
||||
for item in checklist_items:
|
||||
lines.append(f"| {item}".ljust(BOX_WIDTH) + "|")
|
||||
lines.append("|" + " " * BOX_WIDTH + "|")
|
||||
|
||||
lines.append("+" + "-" * w + "+")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def format_markdown(design_system: dict) -> str:
|
||||
"""Format design system as markdown."""
|
||||
project = design_system.get("project_name", "PROJECT")
|
||||
pattern = design_system.get("pattern", {})
|
||||
style = design_system.get("style", {})
|
||||
colors = design_system.get("colors", {})
|
||||
typography = design_system.get("typography", {})
|
||||
effects = design_system.get("key_effects", "")
|
||||
anti_patterns = design_system.get("anti_patterns", "")
|
||||
|
||||
lines = []
|
||||
lines.append(f"## Design System: {project}")
|
||||
lines.append("")
|
||||
|
||||
# Pattern section
|
||||
lines.append("### Pattern")
|
||||
lines.append(f"- **Name:** {pattern.get('name', '')}")
|
||||
if pattern.get('conversion'):
|
||||
lines.append(f"- **Conversion Focus:** {pattern.get('conversion', '')}")
|
||||
if pattern.get('cta_placement'):
|
||||
lines.append(f"- **CTA Placement:** {pattern.get('cta_placement', '')}")
|
||||
if pattern.get('color_strategy'):
|
||||
lines.append(f"- **Color Strategy:** {pattern.get('color_strategy', '')}")
|
||||
lines.append(f"- **Sections:** {pattern.get('sections', '')}")
|
||||
lines.append("")
|
||||
|
||||
# Style section
|
||||
lines.append("### Style")
|
||||
lines.append(f"- **Name:** {style.get('name', '')}")
|
||||
if style.get('keywords'):
|
||||
lines.append(f"- **Keywords:** {style.get('keywords', '')}")
|
||||
if style.get('best_for'):
|
||||
lines.append(f"- **Best For:** {style.get('best_for', '')}")
|
||||
if style.get('performance') or style.get('accessibility'):
|
||||
lines.append(f"- **Performance:** {style.get('performance', '')} | **Accessibility:** {style.get('accessibility', '')}")
|
||||
lines.append("")
|
||||
|
||||
# Colors section
|
||||
lines.append("### Colors")
|
||||
lines.append(f"| Role | Hex |")
|
||||
lines.append(f"|------|-----|")
|
||||
lines.append(f"| Primary | {colors.get('primary', '')} |")
|
||||
lines.append(f"| Secondary | {colors.get('secondary', '')} |")
|
||||
lines.append(f"| CTA | {colors.get('cta', '')} |")
|
||||
lines.append(f"| Background | {colors.get('background', '')} |")
|
||||
lines.append(f"| Text | {colors.get('text', '')} |")
|
||||
if colors.get("notes"):
|
||||
lines.append(f"\n*Notes: {colors.get('notes', '')}*")
|
||||
lines.append("")
|
||||
|
||||
# Typography section
|
||||
lines.append("### Typography")
|
||||
lines.append(f"- **Heading:** {typography.get('heading', '')}")
|
||||
lines.append(f"- **Body:** {typography.get('body', '')}")
|
||||
if typography.get("mood"):
|
||||
lines.append(f"- **Mood:** {typography.get('mood', '')}")
|
||||
if typography.get("best_for"):
|
||||
lines.append(f"- **Best For:** {typography.get('best_for', '')}")
|
||||
if typography.get("google_fonts_url"):
|
||||
lines.append(f"- **Google Fonts:** {typography.get('google_fonts_url', '')}")
|
||||
if typography.get("css_import"):
|
||||
lines.append(f"- **CSS Import:**")
|
||||
lines.append(f"```css")
|
||||
lines.append(f"{typography.get('css_import', '')}")
|
||||
lines.append(f"```")
|
||||
lines.append("")
|
||||
|
||||
# Key Effects section
|
||||
if effects:
|
||||
lines.append("### Key Effects")
|
||||
lines.append(f"{effects}")
|
||||
lines.append("")
|
||||
|
||||
# Anti-patterns section
|
||||
if anti_patterns:
|
||||
lines.append("### Avoid (Anti-patterns)")
|
||||
lines.append(f"- {anti_patterns.replace(' + ', '\n- ')}")
|
||||
lines.append("")
|
||||
|
||||
# Pre-Delivery Checklist section
|
||||
lines.append("### Pre-Delivery Checklist")
|
||||
lines.append("- [ ] No emojis as icons (use SVG: Heroicons/Lucide)")
|
||||
lines.append("- [ ] cursor-pointer on all clickable elements")
|
||||
lines.append("- [ ] Hover states with smooth transitions (150-300ms)")
|
||||
lines.append("- [ ] Light mode: text contrast 4.5:1 minimum")
|
||||
lines.append("- [ ] Focus states visible for keyboard nav")
|
||||
lines.append("- [ ] prefers-reduced-motion respected")
|
||||
lines.append("- [ ] Responsive: 375px, 768px, 1024px, 1440px")
|
||||
lines.append("")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
# ============ MAIN ENTRY POINT ============
|
||||
def generate_design_system(query: str, project_name: str = None, output_format: str = "ascii") -> str:
|
||||
"""
|
||||
Main entry point for design system generation.
|
||||
|
||||
Args:
|
||||
query: Search query (e.g., "SaaS dashboard", "e-commerce luxury")
|
||||
project_name: Optional project name for output header
|
||||
output_format: "ascii" (default) or "markdown"
|
||||
|
||||
Returns:
|
||||
Formatted design system string
|
||||
"""
|
||||
generator = DesignSystemGenerator()
|
||||
design_system = generator.generate(query, project_name)
|
||||
|
||||
if output_format == "markdown":
|
||||
return format_markdown(design_system)
|
||||
return format_ascii_box(design_system)
|
||||
|
||||
|
||||
# ============ CLI SUPPORT ============
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="Generate Design System")
|
||||
parser.add_argument("query", help="Search query (e.g., 'SaaS dashboard')")
|
||||
parser.add_argument("--project-name", "-p", type=str, default=None, help="Project name")
|
||||
parser.add_argument("--format", "-f", choices=["ascii", "markdown"], default="ascii", help="Output format")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
result = generate_design_system(args.query, args.project_name, args.format)
|
||||
print(result)
|
||||
76
.shared/ui-ux-pro-max/scripts/search.py
Normal file
76
.shared/ui-ux-pro-max/scripts/search.py
Normal file
@@ -0,0 +1,76 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
UI/UX Pro Max Search - BM25 search engine for UI/UX style guides
|
||||
Usage: python search.py "<query>" [--domain <domain>] [--stack <stack>] [--max-results 3]
|
||||
python search.py "<query>" --design-system [-p "Project Name"]
|
||||
|
||||
Domains: style, prompt, color, chart, landing, product, ux, typography
|
||||
Stacks: html-tailwind, react, nextjs
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from core import CSV_CONFIG, AVAILABLE_STACKS, MAX_RESULTS, search, search_stack
|
||||
from design_system import generate_design_system
|
||||
|
||||
|
||||
def format_output(result):
|
||||
"""Format results for Claude consumption (token-optimized)"""
|
||||
if "error" in result:
|
||||
return f"Error: {result['error']}"
|
||||
|
||||
output = []
|
||||
if result.get("stack"):
|
||||
output.append(f"## UI Pro Max Stack Guidelines")
|
||||
output.append(f"**Stack:** {result['stack']} | **Query:** {result['query']}")
|
||||
else:
|
||||
output.append(f"## UI Pro Max Search Results")
|
||||
output.append(f"**Domain:** {result['domain']} | **Query:** {result['query']}")
|
||||
output.append(f"**Source:** {result['file']} | **Found:** {result['count']} results\n")
|
||||
|
||||
for i, row in enumerate(result['results'], 1):
|
||||
output.append(f"### Result {i}")
|
||||
for key, value in row.items():
|
||||
value_str = str(value)
|
||||
if len(value_str) > 300:
|
||||
value_str = value_str[:300] + "..."
|
||||
output.append(f"- **{key}:** {value_str}")
|
||||
output.append("")
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="UI Pro Max Search")
|
||||
parser.add_argument("query", help="Search query")
|
||||
parser.add_argument("--domain", "-d", choices=list(CSV_CONFIG.keys()), help="Search domain")
|
||||
parser.add_argument("--stack", "-s", choices=AVAILABLE_STACKS, help="Stack-specific search (html-tailwind, react, nextjs)")
|
||||
parser.add_argument("--max-results", "-n", type=int, default=MAX_RESULTS, help="Max results (default: 3)")
|
||||
parser.add_argument("--json", action="store_true", help="Output as JSON")
|
||||
# Design system generation
|
||||
parser.add_argument("--design-system", "-ds", action="store_true", help="Generate complete design system recommendation")
|
||||
parser.add_argument("--project-name", "-p", type=str, default=None, help="Project name for design system output")
|
||||
parser.add_argument("--format", "-f", choices=["ascii", "markdown"], default="ascii", help="Output format for design system")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Design system takes priority
|
||||
if args.design_system:
|
||||
result = generate_design_system(args.query, args.project_name, args.format)
|
||||
print(result)
|
||||
# Stack search
|
||||
elif args.stack:
|
||||
result = search_stack(args.query, args.stack, args.max_results)
|
||||
if args.json:
|
||||
import json
|
||||
print(json.dumps(result, indent=2, ensure_ascii=False))
|
||||
else:
|
||||
print(format_output(result))
|
||||
# Domain search
|
||||
else:
|
||||
result = search(args.query, args.domain, args.max_results)
|
||||
if args.json:
|
||||
import json
|
||||
print(json.dumps(result, indent=2, ensure_ascii=False))
|
||||
else:
|
||||
print(format_output(result))
|
||||
Reference in New Issue
Block a user